

IDFS Programmers Manual

Version P

Carrie A. Gonzalez

E-MAIL: carrie.gonzalez@swri.org

Southwest Research Institute

28 December 2012

mailto:carrie.gonzalez@swri.org

DESCRIPTION OF THE IDFS PROGRAMMERS MANUAL .. 1
PROGRAMMING EXAMPLES .. 3
EXAMPLE 1 ... 3
EXAMPLE 2 ... 9
EXAMPLE 3 ... 15
EXAMPLE 4 ... 21
EXAMPLE 5 ... 27
EXAMPLE 6 ... 39
EXAMPLE 7 ... 47
EXAMPLE 8 ... 53
EXAMPLE 9 ... 59
ADJUST_TIME .. 65
CALC_TIME_RESOLUTION ... 67
CONVERT_TO_UNITS... 71
CREATE_DATA_STRUCTURE... 83
CREATE_IDF_DATA_STRUCTURE .. 85
CREATE_TENSOR_DATA_STRUCTURE ... 87
DESTROY_LAST_IDF_DATA_STRUCTURE ... 89
DESTROY_LAST_TENSOR_DATA_STRUCTURE .. 91
EXTRACT_SINGLE_ELEMENT_FROM_IDFS_TENSOR .. 93
FIELDS_TO_KEY ... 97
FILE_OPEN .. 101
FILE_POS ... 107
FIRST_IDFS_SENSOR .. 117
FREE_EXPERIMENT_INFO .. 121
FREE_VERSION_INFO .. 123
GET_DATA_KEY ... 125
GET_VERSION_NUMBER .. 127
INIT_IDFS .. 129
NEXT_FILE_START_TIME ... 131
OVERRIDE_POTENTIAL_POLYNOMIAL .. 135
READ_DREC ... 139
READ_DREC_SPIN .. 147
READ_TENSOR_DATA ... 153
READ_IDF ... 159
RESET_EXPERIMENT_INFO .. 161
SELECT_SENSOR... 165
START_IMAGE ... 169
START_OF_SPIN .. 173
TURN_OFF_PITCH_ANGLE_COMPUTATIONS .. 177
TURN_ON_CELESTIAL_POSITION_COMPUTATIONS ... 181
TURN_ON_EULER_ANGLE_COMPUTATIONS .. 185
VALID_IDF_DATA_STRUCTURE ... 189
VALID_TENSOR_DATA_STRUCTURE .. 191
BUFFER_BIN_FILL .. 193

CENTER_AND_BAND_VALUES ... 197
COLLAPSE_DIMENSIONS .. 203
FILL_DATA ... 211
FILL_DATA_ENVELOPE .. 219
FILL_DISCONTINUOUS_DATA... 227
FILL_MODE_DATA ... 235
FILL_MODE_INFO ... 241
FILL_SENSOR_INFO ... 245
FILL_THETA_MATRIX ... 249
MODE_UNITS_INDEX... 255
NUMBER_OF_DATA_BINS .. 259
NUMBER_OF_PHI_BINS ... 263
RETURN_CENTER_AND_BAND_PTRS ... 267
RETURN_PHI_PTRS... 271
SET_BIN_INFO ... 275
SET_COLLAPSE_INFO .. 285
SET_SCAN_INFO ... 289
SET_TIME_VALUES .. 293
SPIN_DATA ... 295
SPIN_DATA_PIXEL ... 301
SWEEP_DATA .. 307
SWEEP_DISCONTINUOUS_DATA .. 313
SWEEP_MODE_DATA... 321
UNITS_INDEX .. 327
CREATE_SCF_DATA_STRUCTURE ... 331
FREE_SCF_INFO .. 335
INIT_SCF ... 337
LOAD_SCF .. 339
READ_SCF... 343
SCF_OPEN ... 347
SCF_OUTPUT_DATA... 351
SCF_POSITION ... 357
SCF_SAMPLE_RATE ... 361
SCF_TERMINATE_SOURCES .. 365
SCF_VERSION_NUMBER ... 369
SCF_ALGORITHM_START ... 371
SCF_BIN_INFO ... 375
SCF_OUTPUT_CENTER_AND_BANDS .. 383
SCF_OUTPUT_DATA_INDEX .. 387
SCF_OUTPUT_SELECT ... 391
SCF_SAMPLE_AVERAGE... 395
SCF_TIME_AVERAGE... 399
SCF_TIME_REFERENCE ... 405
LIBBASE_IDFS.H ... 407
RET_CODES.H .. 409

USER_DEFS.H ... 421
LIBTREC_IDFS.H ... 425
SCF_CODES.H .. 427
SCF_DEFS.H .. 431
SCF_FILE_DEFS.H ... 433
LIBBASE_SCF.H ... 435
LIBAVG_SCF.H .. 437
IDF_DATA ... 439
DIRECTION_COS ... 445
TRANSFORMATION_INFO .. 447
SCF_DATA .. 451
TENSOR_DATA .. 453

Revision Log

Revision Release Date Changes to Document
A 09/12/2002 • Manual was re-formatted and modifications were made

to bring the manual up-to-date with respect to code.
• Calling sequence changed for set_bin_info ()
• Calling sequence changed for collapse_dimensions ()
• Changes were made to update the error codes returned

by the SCF modules since tensor manipulation was
implemented.

B 01/07/2003 • Added the module fill_data_envelope ()
C 10/20/2003 • Calling sequence changed for set_bin_info () and

scf_bin_info () since added new variable spacing
format ‘A’ for actual values (no computations)

D 08/23/2004 • Updated SYNPOSIS and EXAMPLES sections for
fields_to_key ()

• Updated DESCRIPTION and EXAMPLES sections for
init_idfs () and init_scf () to reference dbInitialize ()
and CfgInit ().

• Updated ARGUMENTS section for better clarification
for set_bin_info ()

• Added the module first_idfs_sensor ()
• Calling sequence changed for collapse_dimensions ()
• Calling sequence changed for return_phi_ptrs ()
• Updated ARGUMENTS, DESCRIPTION and

EXAMPLES section for scf_bin_info ()
• Added the module scf_terminate_sources ()
• Updated ret_codes header file (1H)

E 06/16/05 • Table of Contents added
• Added another example between example 5 and

example 6, so renumbered examples 6 - 8
• Added 1R modules create_tensor_data_structure (),

extract_from_idfs_tensor(), read_drec_spin (),
read_tensor_data (), start_of_spin (),
start_spin_source_status (), and
valid_tensor_data_structure ()

• Added 2R modules spin_data (), spin_data_pixel ()
F 12/15/05 • convert_to_units(), fill_sensor_info (),

fill_mode_info(), mode_units_index(), units_index(),
set_bin_info(), and set_scan_info() changed the data
type for the tbl_oper argument(s) since table operators
were expanded from 2-byte to 4-byte values for the
additional data buffer capabilities

Revision Release Date Changes to Document
F 12/15/05 • Added error codes –438 through -461 to ret_codes.h

header file
• Added definition of MAX_UNITS_BUFFERS to

user_defs.h header file, needed for the data buffer
capabilities that were added for unit conversion

• Added write-up for potential_source_status() and
modified write-up for idf_data.h since added capability
to return spacecraft potential data from read_drec().

• Updated status codes for file_open(), file_pos(),
read_drec() and read_tensor_data() for error codes
associated with spacecraft potential data.

G 06/14/06 • Added / removed error codes from ret_codes.h header
file and added to / removed from modules that return
these error codes.

H 06/30/06 • Updated file_pos(), free_experiment_info() for
tensor_data or idf_data usage for data structure
parameter

• Modified get_data_key() to make references to the
include file libdb.h which is needed for the prototype
since it was moved out of libbase_idfs.h

• Updated calling sequence for sweep_data(),
sweep_mode_data() and sweep_discontinuous_data()
and updated DESCRIPTION section for spacecraft
potential data

• Added spacecraft potential as data type for
units_index(), convert_to_units(), and
fill_sensor_info() and updated DESCRIPTION
section

• Updated DESCRIPTION section for spacecraft
potential data for file_open(), file_pos(), read_drec(),
read_drec_spin(), reset_experiment_info(),
fill_data(), fill_data_envelope(),
fill_discontinuous_data(), fill_mode_data(),
spin_data(), and spin_data_pix()

• Added SCF_TENSOR_VECTOR_SRC error code to
scf_output_data() and SCF_codes include file (3H)

I 08/17/06 • Added new module override_potential_polynomial()
and added new error codes to ret_codes.h header file.

J 12/18/06 • Added new modules
turn_off_pitch_angle_computations() and
turn_on_euler_angle_computations() for speed
issues.

Revision Release Date Changes to Document
J 12/18/06 • Updated ret_codes.h, user_defs.h, and idf_data.h

header files since added capability to return euler angle
data from read_drec().

• Modified file_pos(), file_open(), read_drec(), and
read_tensor_data() for error codes associated with
euler angle data

• Added modules euler_angle_source_status()
K 09/29/08 • Added clarification to description section for

override_potential_polynomial()
L 07/14/09 • Added module create_data_structure()

• Modified calling sequence for
center_and_band_values ()

• Updated ret_codes.h – moved all positive status codes
to beginning and added CENTER_CONVERSION,
READ_SPIN_DATA_GAP,
WRONG_DATA_STRUCTURE and
CREATE_DSTR_NOT_FOUND

M 09/24/09 • Added new modules for coordinate system
transformations:

 turn_on_celestial_position_computations(),
 celestial_position_source_status()
• Updated ret_codes.h for coordinate system

transformations – added
 TURN_ON_CP_NOT_FOUND,
 UPDATE_IDF_BAD_CP_DEF,
 CP_MAIN_DATA_MISSING, CP_STR_MALLOC,
 CP_DATA_MALLOC, FILE_POS_CP,
 CP_INFO_IDF_ELE_NOT_FOUND,
 CP_INFO_IDF_MANY_BYTES,
 CP_INFO_IDF_TBL_NUM,
 CP_INFO_IDF_CON_NUM,
 CP_INFO_IDF_NO_ENTRY,
 CP_TBL_MALLOC, CP_BAD_SRC,
 BAD_CP_FORMAT, NO_CP_CONSTANT,
 RESET_CP_REALLOC, CP_BAD_FRAC,
 CP_BAD_TIMES, RESET_TINFO_MALLOC
• Updated user_defs.h to add coordinate system

transformation mneumonics
• Removed unused error codes from ret_codes.h, which

include –
NUM_CAL_MALLOC, OPEN_EX_MALLOC,
LOCATE_EX_MALLOC, and
VIDF_OPEN_EX_MALLOC

Revision Release Date Changes to Document
M 09/24/09 • Modified error codes returned by file_open(),

file_pos(), read_drec(), and read_tensor_data() to
reflect codes associated with coordinate system
transformation code

• Modified idf_data structure for coordinate system
transformation changes and added write-up for
idfs_transformation structure

• Updated tensor_data structure since out of revision
• Updated example section in fields_to_key () to utilize

SDDAS data types
• Modified read_drec_spin () since calling sequence was

incorrect
• Updated error codes returned by scf_output_data() and

scf_position()
• Removed some error codes returned by

collapse_dimensions() that are no longer applicable
• Updated calling sequences for spin_data () and

spin_data_pixel () – changes were needed in case of
coordinate system transformation

• Updated error codes returned by load_scf ()
N 08/31/11 • Updated description section for

turn_off_pitch_angle_computations(),
turn_on_euler_angle_computations() and
turn_on_celestial_position_computations() since
must be called BEFORE file_pos(), not read_drec()

• Updated description section for file_pos () to indicate
that data structures have been filled in and can be
interrogated upon return and updated error codes

• Deleted write-ups for start_spin_source_status(),
potential_source_status(),
pitch_angle_source_status(),
euler_angle_source_status() and
celestial_position_source_status() since no longer
available

• Changed name from extract_from_idfs_tensor() to
extract_single_element_from_idfs_tensor()

• Moved status codes associated with ancillary data from
file_open() to file_pos() since ancillary data is now
processed AFTER the main IDFS source has been
positioned successfully

• Updated error codes for read_tensor_data() since data
quality flags can now be a tensor as well

• Updated error codes for collapse_dimensions()

Revision Release Date Changes to Document
N 08/31/11 • Removed HDR_FMT_TWO_… error codes from list

of error codes returned by read_drec () since only
pertinent to multi-dimensional data

• Updated SCF_DEFS.H in section 3H
• Modified data type for cal_len and cset_num elements

in idf_data structure in section 1S
• Modifed tensor_data structure in section 1S

O 06/04/12 • Added new modules destroy_last_idf_data_structure
() and destroy_last_tensor_data_structure ()

• Updated error codes for file_pos() since now need to
make sure address of data structure is valid

• Updated ret_codes.h header file since added these 2
new modules and modified file_pos()

P 12/28/12 • Updated ret_codes.h for background data – added
 BKGD_MAIN_DATA_MISSING,
 BKGD_BAD_SRC, BAD_BKGD_FORMAT,
 BKGD_TBL_MALLOC, BKGD_MALLOC,
 BKGD_DATA_MALLOC,
 BKGD_IDF_DATA_MALLOC,
 BKGD_INFO_IDF_ELE_NOT_FOUND,
 BKGD_INFO_IDF_MANY_BYTES,
 BKGD_INFO_IDF_TBL_NUM,
 BKGD_INFO_IDF_CON_NUM,
 BKGD_INFO_IDF_NO_ENTRY,
 FILE_POS_BKGD, BKGD_BAD_TIMES,
 RESET_BKGD_REALLOC, BKGD_BAD_FRAC,
 UPDATE_IDF_BAD_BKGD_DEF,
 NO_BKGD_CONSTANT
• Modified error codes returned by file_open(),

file_pos(), read_drec() and read_tensor_data() to
reflect codes associated with background data

• Updated user_defs.h and idf_data.h header files since
added capability to return background data from
read_drec().

• Added background as data type for units_index(),
convert_to_units(), and fill_sensor_info() and
updated DESCRIPTION section

• Updated DESCRIPTION section for background data
for file_open(), file_pos(), read_drec(),
read_drec_spin(), reset_experiment_info(),
fill_data(), fill_data_envelope(),
fill_discontinuous_data(), fill_mode_data(),
spin_data(), spin_data_pix(), sweep_data(),
sweep_discontinuous_data() and sweep_mode_data()

 1 December 28, 2012

DESCRIPTION OF THE IDFS PROGRAMMERS MANUAL

The IDFS Programmers Manual describes the set of routines that can be used to access
data that is stored in IDFS format and to access the derived data products defined within
an SCF file. This manual consists of ten sections entitled 1R, 2R, 3R, 4R, 1H, 2H, 3H,
4H, 1S and 3S. The section entitled 1R contains a detailed description of the basic set of
IDFS data retrieval routines that return data one sample set at a time or one spin at a time.
The section entitled 2R contains a detailed description of the IDFS routines that are used
to retrieve data that is time-averaged, sample-averaged, or spin-averaged. Time-averaged
data refers to data that is acquired for a specified time interval. Sample-averaged data
refers to data that is averaged over a specific number of data samples. Spin-averaged
data refers to data that is averaged over a complete spin. The section entitled 3R contains
a detailed description of the basic set of SCF output retrieval routines that return data for
each iteration of the SCF algorithm. The section entitled 4R contains a detailed
description of the SCF routines that are used to retrieve derived data products that are
time-averaged or sample-averaged. Time-averaged SCF data has the same meaning as
time-averaged IDFS data. Sample-averaged SCF data refers to data that is averaged over
a specific number of iterations of the SCF algorithm.

The sections entitled 1H, 2H, 3H and 4H contain a description of each of the IDFS/SCF
include files. These include files contain the return codes for the IDFS/SCF routines,
mnemonics that should be utilized for some of the parameter values to the various
routines and the prototypes for the IDFS/SCF routines. The section entitled 1S contains a
detailed description of the data structure which holds the pertinent information returned
by the IDFS read routine. The last section, 3S, contains a detailed description of the data
structure which holds the values returned from the execution of the algorithm in the
named SCF file.

The SCF software supports post acquisition analysis. The IDFS software supports real-
time and post acquisition analysis. The processing for real-time and post acquisition
analysis differs somewhat based upon the nature of the data files. In the real-time
scenario, the header and data files are incomplete and it is possible to attempt to read
from either file prior to the data being received. This will result in a premature end-of-
file (eof) and the IDFS routine will return the status code EOF_STATUS for a header file
read and DREC_EOF_NO_SENSOR or DREC_EOF_SENSOR for a data file read. For
real-time processing, if any of the three codes are returned, the processing simply
continues, anticipating that the data will eventually be received and processed at a later
date. A true end-of-file status is acknowledged by the read_drec routine, returning the
status code LOS_STATUS or NEXT_FILE_STATUS, as defined in the description of
the read_drec routine. For post analysis acquisition, the IDFS routines may return the
code FILL_HEADER, indicating that a dummy or fill header was read from the header
file - the header record was never received and placed into the file. Since the data file
should be complete, no end-of-file (eof) should be returned for a call to the read routine.
If an eof is encountered (zero bytes read from the file), the error code
DREC_READ_ERROR is returned. If either of these return codes is encountered in post

 2 December 28, 2012

analysis acquisition, the system should be terminated, indicating a possibly corrupted
header or data file. The only end-of-file status acceptable for post analysis acquisition is
the status code NEXT_FILE_STATUS or LOS_STATUS. It is also possible that a
partial read may take place - that is, the number of bytes read did not match the number
of bytes asked for. The IDFS routine will return the status code PARTIAL_READ in a
playback scenario and EOF_STATUS in a real-time scenario and will re-position the file
pointer at the start of the record in question. For real-time processing, if EOF_STATUS
is returned, the processing simply continues, anticipating that the next read will result in a
complete record. For post analysis acquisition, if PARTIAL_READ is returned, the
system should be terminated, indicating a possibly corrupted header or data file.

All of the IDFS and SCF routines are detailed in depth within this manual. In the
ARGUMENTS section of the description, a brief explanation of each argument or
parameter is given. In some cases, a mnemonic is shown in parentheses for specific
values. It is recommended that the user use the mnemonics instead of the specified value
for the parameters. These mnemonics are defined in the user_defs.h include file for the
IDFS routines and in the SCF_defs.h include file for the SCF routines. These files are
described in sections 1H and 3H of the IDFS Programmers Manual. Using the
mnemonics increases readability and guards against possible future changes to parameter
values.

The IDFS and SCF software is written in the C programming language. In order to ease
the task of porting the software to different platforms, the software utilizes typedefs.
These typedefs are defined in the SDDAS_types.h include file, which can be found in
section 1H of the IDFS Programmers Manual. All IDFS and SCF routines utilize the
typedefs for arguments and return values.

example 1 example 1

 3 December 28, 2012

PROGRAMMING EXAMPLES

In order to help explain how a programmer would go about developing a program that utilizes the
IDFS routines, examples of programs that retrieve and display the data on the screen from the TSS-
1 RETE experiment are shown below. These programs illustrate both real-time and post analysis
acquisition of data for a single sensor, as well as for all sensors for a given virtual instrument.

EXAMPLE 1

#include <stdio.h>
#include <string.h>
#include "ret_codes.h"
#include "user_defs.h"
#include "libCfg.h"
#include "libbase_idfs.h"
#include "libdb.h"

/* This routine processes real-time data for RTLA's sensor 0. */

void main (void)
{
 struct idf_data *EXP_DATA;
 SDDAS_FLOAT conv_data[1000];
 SDDAS_LONG btime_sec, btime_nano, etime_sec, etime_nano, *tbl_oper;
 SDDAS_ULONG data_key;
 SDDAS_USHORT version;
 register SDDAS_USHORT k;
 SDDAS_SHORT rcode, sensor, ret_val;
 SDDAS_SHORT btime_yr, btime_day, etime_yr, etime_day;
 SDDAS_CHAR extension[3], full_swp = 1, fwd = 1, *tbls_to_apply, num_tbls;
 char more_data = 1;
 void *idf_data_ptr;

 /***/
 /* Set the start and stop time (in this case to reflect real-time scenario), select the */
 /* sensor of interest, and select the data file of interest ("" means default file is to be */
 /* used). */
 /***/

 btime_yr = -1;
 btime_day = -1;
 btime_sec = -1;
 btime_nano = 0;
 etime_yr = -1;
 etime_day = -1;

example 1 example 1

 4 December 28, 2012

 etime_sec = -1;
 etime_nano = 0;
 sensor = 0;
 strcpy (extension,"");
 CfgInit ();
 dbInitialize ();
 init_idfs ();

 /***/
 /* Retrieve the key that is associated with the project, mission, experiment, instrument */
 /* and virtual instrument specified. */
 /***/

 ret_val = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from get_data_key routine.\n", ret_val);
 exit (-1);
 }
 get_version_number (&version);

 /***/
 /* Create an instance of the idf_data structure. */
 /***/

 ret_val = create_idf_data_structure (&idf_data_ptr);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from create_idf_data_structure routine.\n", ret_val);
 exit (-1);
 }
 EXP_DATA = (struct idf_data *) idf_data_ptr;

 /***/
 /* Open the data files associated with the time period selected for this data set / */
 /* extension / version combination. */
 /***/

 ret_val = file_open (data_key, extension, version, btime_yr, btime_day, btime_sec,
 btime_nano, etime_yr, etime_day, etime_sec, etime_nano, 0);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from file_open routine.\n", ret_val);
 exit (-1);
 }

example 1 example 1

 5 December 28, 2012

 /***/
 /* Since the routine FILE_OPEN sets internal flags to indicate that all sensors are to */
 /* be processed, reset the flags to indicate that only sensor 0 is being requested. */
 /***/

 ret_val = select_sensor (data_key, extension, version, sensor);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from select_sensor routine.\n", ret_val);
 exit (-1);
 }

 /***/
 /* Retrieve the raw units for the data. */
 /***/

 num_tbls = 0;
 tbls_to_apply = NULL;
 tbl_oper = NULL;

 /***/
 /* Get the data for the requested sensor. */
 /***/

 while (more_data)
 {
 /**/
 /* Find the position in the data file closest to the requested start time for this data set. */
 /* If the file has been positioned correctly, future calls to this routine just return the */
 /* ALL_OKAY status; otherwise, the routine keeps trying to read from the files and */
 /* to position the file pointers (records may not have been written to disk yet). */
 /**/

 ret_val = file_pos (data_key, extension, version, idf_data_ptr, btime_yr, btime_day,
 btime_sec, btime_nano, etime_yr, etime_day, etime_sec, etime_nano);
 if (ret_val == LOS_STATUS)
 more_data = 0;
 else if (ret_val == NEXT_FILE_STATUS)
 {
 /***
 /* For realtime processing, btime_sec is set to –1 so that when files are */
 /* crossed, the routines will position the file at the beginning of that next file.*/
 /***/
 rcode = reset_experiment_info (data_key, extension, version, -1,-1, -1, -1,
 etime_yr, etime_day, etime_sec, etime_nano);

example 1 example 1

 6 December 28, 2012

 if (rcode != ALL_OKAY)
 {
 printf ("\nError %d from reset_experiment_info.\n", rcode);
 exit (-1);
 }
 }
 else if (ret_val != ALL_OKAY && ret_val != EOF_STATUS)
 {
 printf ("\n Error %d from file_pos routine.\n", ret_val);
 exit (-1);
 }

 if (ret_val == ALL_OKAY)
 {
 ret_val = read_drec (data_key, extension, version, idf_data_ptr, sensor, fwd, full_swp);
 if (ret_val < 0)
 {
 printf ("\nError %d from read_drec.\n", ret_val);
 exit (-1);
 }

 /***/
 /* The sensor data was found within the time being processed. */
 /***/

 if (ret_val == ALL_OKAY || EXP_DATA->filled_data)
 {
 rcode = convert_to_units (data_key, extension, version, idf_data_ptr,
 sensor, SENSOR, 0, num_tbls, tbls_to_apply,
 tbl_oper, conv_data, 0, 0);
 if (rcode != ALL_OKAY)
 {
 printf ("\nError %d from convert_to_units.\n", rcode);
 exit (-1);
 }

 /**/
 /* Print the times for the sample being returned. */
 /**/

 printf ("\n\nSENSOR %d's START TIME_MS = %ld", sensor, EXP_DATA->bmilli);
 printf ("\nSENSOR %d's START TIME_NS = %ld", sensor, EXP_DATA->bnano);
 printf ("\nSENSOR %d's END TIME_MS = %ld", sensor, EXP_DATA->emilli);
 printf ("\nSENSOR %d's END TIME_NS = %ld", sensor, EXP_DATA->enano);

example 1 example 1

 7 December 28, 2012

 /**/
 /* Print the data, 6 values per row, in exponential format. */
 /**/

for (k = 0; k < EXP_DATA->num_sample; ++k)
 {
 if (k % 6 == 0)
 printf ("\n");
 printf ("%10.2e ", conv_data[k]);
 }

 printf ("\n\n");
 }

 if (ret_val == LOS_STATUS)
 more_data = 0;
 else if (ret_val == NEXT_FILE_STATUS)
 {
 /***/
 /* For realtime processing, btime_sec is set to -1 so that when files are */
 /* crossed, the routines will position the file at the beginning of that next */
 /* file. */
 /***/

 rcode = reset_experiment_info (data_key, extension, version, -1,-1, -1, -1,
 etime_yr, etime_day, etime_sec, etime_nano);
 if (rcode != ALL_OKAY)
 {
 printf ("\nError %d from reset_experiment_info.\n", rcode);
 exit (-1);
 }
 }
 }
 }
 free_experiment_info();
}

example 1 example 1

 8 December 28, 2012

example 2 example 2

 9 December 28, 2012

EXAMPLE 2

#include <stdio.h>
#include <string.h>
#include "ret_codes.h"
#include "user_defs.h"
#include "libbase_idfs.h"
#include "libVIDF.h"
#include "libCfg.h"
#include "libdb.h"

/* This routine processes real-time data for all RTLA sensors. */

void main (void)
{
 struct idf_data *EXP_DATA;
 register SDDAS_USHORT k;
 SDDAS_FLOAT conv_data[1000];
 SDDAS_LONG btime_sec, btime_nano, etime_sec, etime_nano, rval, *tbl_oper;
 SDDAS_ULONG data_key;
 SDDAS_USHORT version;
 SDDAS_SHORT rcode, sensor, ret_val, num_sensor;
 SDDAS_SHORT btime_yr, btime_day, etime_yr, etime_day;
 SDDAS_CHAR extension[3], full_swp = 1, fwd = 1, *tbls_to_apply, num_tbls;
 char more_data = 1;
 void *idf_data_ptr;

 /**/
 /* Set the start and stop time (in this case to reflect real-time scenario) and select the */
 /* data file of interest ("" means default file is to be used). */
 /**/

 btime_yr = -1;
 btime_day = -1;
 btime_sec = -1;
 btime_nano = 0;

 etime_yr = -1;
 etime_day = -1;
 etime_sec = -1;
 etime_nano = 0;
 strcpy (extension,"");
 CfgInit ();
 dbInitialize ();
 init_idfs ();

example 2 example 2

 10 December 28, 2012

 /***/
 /* Retrieve the key that is associated with the project, mission, experiment, instrument */
 /* and virtual instrument specified. */
 /***/

 ret_val = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from get_data_key routine.\n", ret_val);
 exit (-1);
 }
 get_version_number (&version);

 /***/
 /* Create an instance of the idf_data structure. */
 /***/

 ret_val = create_idf_data_structure (&idf_data_ptr);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from create_idf_data_structure routine.\n", ret_val);
 exit (-1);
 }
 EXP_DATA = (struct idf_data *) idf_data_ptr;

 /***/
 /* Open the data files associated with the time period selected for this data set / */
 /* extension / version combination. */
 /***/

 ret_val = file_open (data_key, extension, version, btime_yr, btime_day, btime_sec,
 btime_nano, etime_yr, etime_day, etime_sec, etime_nano, 0);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from file_open routine.\n", ret_val);
 exit (-1);
 }

 /**/
 /* Find out the number of sensors defined for this virtual instrument. */
 /**/

 rval = read_idf (data_key, extension, version, (SDDAS_CHAR *) &num_sensor, _SEN,
 0, 0, 1);

example 2 example 2

 11 December 28, 2012

 if (rval < 0)
 {
 printf ("\n Error %ld from read_idf routine.\n", rval);
 exit (-1);
 }

 /***/
 /* Retrieve the raw units for the data. */
 /***/

 num_tbls = 0;
 tbls_to_apply = NULL;
 tbl_oper = NULL;

 /***/
 /* Get the data for all sensors. */
 /***/

 while (more_data)
 {
 /**/
 /* Find the position in the data file closest to the requested start time for this data set. */
 /* If the file has been positioned correctly, future calls to this routine just return the */
 /* ALL_OKAY status; otherwise, the routine keeps trying to read from the files and */
 /* to position the file pointers (records may not have been written to disk yet). */
 /**/

 ret_val = file_pos (data_key, extension, version, idf_data_ptr, btime_yr, btime_day,
 btime_sec, btime_nano, etime_yr, etime_day, etime_sec, etime_nano);
 if (ret_val == LOS_STATUS)
 more_data = 0;
 else if (ret_val == NEXT_FILE_STATUS)
 {
 /***/
 /* For realtime processing, btime_sec is set to -1 so that when files are */
 /* crossed, the routines will position the file at the beginning of that next file. */
 /***/

 rcode = reset_experiment_info (data_key, extension, version, -1, -1, -1, -1,
 etime_yr, etime_day, etime_sec, etime_nano);
 if (rcode != ALL_OKAY)
 {
 printf ("\nError %d from reset_experiment_info.\n", rcode);
 exit (-1);
 }

example 2 example 2

 12 December 28, 2012

 }
 else if (ret_val != ALL_OKAY && ret_val != EOF_STATUS)
 {
 printf ("\n Error %d from file_pos routine.\n", ret_val);
 exit (-1);
 }
 if (ret_val == ALL_OKAY)
 {
 for (sensor = 0; sensor < num_sensor; ++sensor)
 {
 /**/
 /* Advance to the next data set only if the last sensor is being processed to ensure */
 /* all samples which occur at the same time are processed simultaneously. */
 /**/

 fwd = (sensor == num_sensor - 1) ? 1 : 0;
 ret_val = read_drec (data_key, extension, version, idf_data_ptr, sensor, fwd, full_swp);
 if (ret_val < 0)
 {
 printf ("\nError %d from read_drec.\n", ret_val);
 exit (-1);
 }

 /**/
 /* The sensor data was found within the time being processed. */
 /**/

 if (ret_val == ALL_OKAY || EXP_DATA->filled_data)
 {
 rcode = convert_to_units (data_key, extension, version, idf_data_ptr, sensor,

 SENSOR, 0, num_tbls, tbls_to_apply, tbl_oper,
 conv_data, 0, 0);

 if (rcode != ALL_OKAY)
 {
 printf ("\nError %d from convert_to_units.\n", rcode);
 exit (-1);
 }

 /**/
 /* Print the times for the sample being returned. */
 /**/

 printf ("\n\nSENSOR %d's START TIME_MS = %ld", sensor, EXP_DATA->bmilli);
 printf ("\nSENSOR %d's START TIME_NS = %ld", sensor, EXP_DATA->bnano);
 printf ("\nSENSOR %d's END TIME_MS = %ld", sensor, EXP_DATA->emilli);

example 2 example 2

 13 December 28, 2012

 printf ("\nSENSOR %d's END TIME_NS = %ld", sensor, EXP_DATA->enano);

 /***/
 /* Print data values, 6 values per row, in exponential format. */
 /***/

 for (k = 0; k < EXP_DATA->num_sample; ++k)
 {
 if (k % 6 == 0)
 printf ("\n");
 printf ("%10.2e ", conv_data[k]);
 }

 printf ("\n\n");
 }

 if (ret_val == LOS_STATUS)
 more_data = 0;
 else if (ret_val == NEXT_FILE_STATUS)
 {
 /***/
 /* For realtime processing, btime_sec is set to -1 so that when files are */
 /* crossed, the routines will position the file at the beginning of that next file. */
 /***/

 rcode = reset_experiment_info (data_key, extension, version, -1, -1, -1, -1,
 etime_yr, etime_day, etime_sec, etime_nano);
 if (rcode != ALL_OKAY)
 {
 printf ("\nError %d from reset_experiment_info.\n", rcode);
 exit (-1);
 }
 }
 }
 }
 }
 free_experiment_info();
}

example 2 example 2

 14 December 28, 2012

example 3 example 3

 15 December 28, 2012

EXAMPLE 3

#include <stdio.h>
#include <string.h>
#include "ret_codes.h"
#include "user_defs.h"
#include "libbase_idfs.h"
#include "libCfg.h"
#include "libdb.h"

/* This routine processes playback data for RTLA's sensor 0. */

void main (void)
{
 struct idf_data *EXP_DATA;
 SDDAS_FLOAT conv_data[1000];
 SDDAS_LONG btime_sec, btime_nano, etime_sec, etime_nano, ret_time_sec;
 SDDAS_LONG ret_time_nano, new_start_sec, new_start_nsec, *tbl_oper;
 SDDAS_ULONG data_key;
 SDDAS_USHORT version;
 register SDDAS_USHORT k;
 SDDAS_SHORT sensor, ret_val, rcode, new_year, new_day;
 SDDAS_SHORT btime_yr, btime_day, etime_yr, etime_day;
 SDDAS_CHAR extension[3], full_swp = 1, fwd = 1, *tbls_to_apply, num_tbls;
 char more_data = 1;
 void *idf_data_ptr;

 /**/
 /* Set the start and stop time. This example uses year 1991, day 93, starting at 00:01:21 */
 /* (hh:mm:ss) - 81 seconds - and ending at 00:25:36 (hh:mm:ss) - 1536 seconds. */
 /**/

 btime_yr = 1991;
 btime_day = 93;
 btime_sec = 81;
 btime_nano = 0;

 etime_yr = 1991;
 etime_day = 93;
 etime_sec = 1536;
 etime_nano = 0;

 /**/
 /* Set the sensor of interest and the data file of interest ("" means default file is to be used).*/
 /**/

example 3 example 3

 16 December 28, 2012

 sensor = 0;
 strcpy (extension,"");
 CfgInit ();
 dbInitialize ();
 init_idfs ();

 /***/
 /* Retrieve the key that is associated with the project, mission, experiment, instrument */
 /* and virtual instrument specified. */
 /***/

 ret_val = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from get_data_key routine.\n", ret_val);
 exit (-1);
 }
 get_version_number (&version);

 /***/
 /* Create an instance of the idf_data structure. */
 /***/

 ret_val = create_idf_data_structure (&idf_data_ptr);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from create_idf_data_structure routine.\n", ret_val);
 exit (-1);
 }
 EXP_DATA = (struct idf_data *) idf_data_ptr;

 /***/
 /* Open the data files associated with the time period selected for this data set / */
 /* extension/version combination. */
 /***/

 ret_val = file_open (data_key, extension, version, btime_yr, btime_day, btime_sec,
 btime_nano, etime_yr, etime_day, etime_sec, etime_nano, 0);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from file_open routine.\n", ret_val);
 exit (-1);
 }

example 3 example 3

 17 December 28, 2012

 /***/
 /* Since the routine FILE_OPEN sets internal flags to indicate that all sensors are to */
 /* be processed, reset the flags to indicate that only sensor 0 is being requested. */
 /***/

 ret_val = select_sensor (data_key, extension, version, sensor);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from select_sensor routine.\n", ret_val);
 exit (-1);
 }

 /***/
 /* Find the position in the data file closest to the requested start time for this data set. */
 /* Unlike real-time, if an error is encountered, the system should terminate - no need to */
 /* retry in anticipation of incoming data. */
 /***/

 ret_val = file_pos (data_key, extension, version, idf_data_ptr, btime_yr, btime_day,
 btime_sec, btime_nano, etime_yr, etime_day, etime_sec, etime_nano);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from file_pos.\n", ret_val);
 exit (-1);
 }

 /***/
 /* Retrieve the raw units for the data. */
 /***/

 num_tbls = 0;
 tbls_to_apply = NULL;
 tbl_oper = NULL;

 /**/
 /* Get the data for the requested sensor. Terminate when the requested end time is reached*/
 /* or when no more data files are available for processing. */
 /**/

 while (more_data)
 {
 ret_val = read_drec (data_key, extension, version, idf_data_ptr, sensor, fwd, full_swp);
 if (ret_val < 0)
 {
 printf ("\nError %d from read_drec.\n", ret_val);

example 3 example 3

 18 December 28, 2012

 exit (-1);
 }

 /**/
 /* The sensor data was found within the time sample being processed. */
 /**/

 if (ret_val == ALL_OKAY || EXP_DATA->filled_data)
 {
 ret_time_sec = (EXP_DATA->bmilli + (EXP_DATA->bnano / 1000000)) / 1000;
 ret_time_nano = (EXP_DATA->bmilli % 1000) * 1000000 + EXP_DATA->bnano;

 /**/
 /* The requested end time has been reached? */
 /**/

 if (EXP_DATA->byear > etime_yr ||
 (EXP_DATA->byear == etime_yr && EXP_DATA->bday > etime_day) ||
 (EXP_DATA->byear == etime_yr && EXP_DATA->bday == etime_day &&
 ret_time_sec > etime_sec) ||
 (EXP_DATA->byear == etime_yr && EXP_DATA->bday == etime_day &&
 ret_time_sec == etime_sec && ret_time_nano > etime_nano))
 {
 more_data = 0;
 break;
 }

 rcode = convert_to_units (data_key, extension, version, idf_data_ptr, sensor,
 SENSOR, 0, num_tbls, tbls_to_apply, tbl_oper, conv_data,
 0, 0);
 if (rcode != ALL_OKAY)
 {
 printf ("\nError %d from convert_to_units.\n", rcode);
 exit (-1);
 }

 /***/
 /* Print the times for the sample being returned. */
 /***/

 printf ("\n\nSENSOR %d's START TIME_MS = %ld", sensor, EXP_DATA->bmilli);
 printf ("\nSENSOR %d's START TIME_NS = %ld", sensor, EXP_DATA->bnano);
 printf ("\nSENSOR %d's END TIME_MS = %ld", sensor, EXP_DATA->emilli);
 printf ("\nSENSOR %d's END TIME_NS = %ld", sensor, EXP_DATA->enano);

example 3 example 3

 19 December 28, 2012

 /***/
 /* Print the data values, 6 values per row, in exponential format. */
 /***/
 for (k = 0; k < EXP_DATA->num_sample; ++k)
 {
 if (k % 6 == 0)
 printf ("\n");
 printf ("%10.2e ", conv_data[k]);
 }

 printf ("\n\n");
 }

 if (ret_val == LOS_STATUS || ret_val == NEXT_FILE_STATUS)
 {
 /***/
 /* Get the start time to use to get the next data file. */
 /***/

 rcode = next_file_start_time (data_key, extension, version, 0, &new_year,
 &new_day, &new_start_sec, &new_start_nsec);
 if (rcode != ALL_OKAY)
 {
 printf ("\n Error %d from next_file_start_time.\n", rcode);
 exit (-1);
 }

 rcode = reset_experiment_info (data_key, extension, version, new_year,
 new_day, new_start_sec, new_start_nsec,
 etime_yr, etime_day, etime_sec, etime_nano);
 if (rcode == NO_DATA)
 {
 more_data = 0;
 break;
 }
 else if (rcode != ALL_OKAY)
 {
 printf ("\n Error %d from reset_experiment_info.\n", rcode);
 exit (-1);
 }

 rcode = file_pos (data_key, extension, version, idf_data_ptr, new_year, new_day,
 new_start_sec, new_start_nsec, etime_yr, etime_day, etime_sec,
 etime_nano);

example 3 example 3

 20 December 28, 2012

 if (rcode != ALL_OKAY)
 {
 printf ("\n Error %d from file_pos.\n", rcode);
 exit (-1);
 }
 }
 }
 free_experiment_info();
}

example 4 example 4

 21 December 28, 2012

EXAMPLE 4

#include <stdio.h>
#include <string.h>
#include "ret_codes.h"
#include "user_defs.h"
#include "libbase_idfs.h"
#include "libVIDF.h"
#include "libCfg.h"
#include "libdb.h"

/* This routine processes playback data for all RTLA sensors. */

void main (void)
{

 struct idf_data *EXP_DATA;
 SDDAS_FLOAT conv_data[1000];
 SDDAS_LONG btime_sec, btime_nano, etime_sec, etime_nano, ret_time_sec;
 SDDAS_LONG ret_time_nano, new_start_sec, new_start_nsec, rval, *tbl_oper;
 SDDAS_ULONG data_key;
 SDDAS_USHORT version;
 register SDDAS_USHORT k;
 SDDAS_SHORT sensor, ret_val, num_sensor, rcode, new_year, new_day;
 SDDAS_SHORT btime_yr, btime_day, etime_yr, etime_day;
 SDDAS_CHAR extension[3], full_swp = 1, fwd = 1, *tbls_to_apply, num_tbls;
 char more_data = 1;
 void *idf_data_ptr;

 /**/
 /* Set the start and stop time. This example uses year 1991, day 93, starting at */
 /* 00:01:21 (hh:mm:ss) - 81 seconds - ending at 00:25:36(hh:mm:ss) - 1536 seconds. */

 /**/

 btime_yr = 1991;
 btime_day = 93;
 btime_sec = 81;
 btime_nano = 0;
 etime_yr = 1991;
 etime_day = 93;
 etime_sec = 1536;
 etime_nano = 0;

 /***/
 /* Set the data file of interest ("" means default file is to be used). */
 /***/

example 4 example 4

 22 December 28, 2012

 strcpy (extension,"");
 CfgInit ();
 dbInitialize ();
 init_idfs ();

 /***/
 /* Retrieve the key that is associated with the project, mission, experiment, instrument */
 /* and virtual instrument specified. */
 /***/

 ret_val = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from get_data_key routine.\n", ret_val);
 exit (-1);
 }
 get_version_number (&version);

 /***/
 /* Create an instance of the idf_data structure. */
 /***/

 ret_val = create_idf_data_structure (&idf_data_ptr);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from create_idf_data_structure routine.\n", ret_val);
 exit (-1);
 }
 EXP_DATA = (struct idf_data *) idf_data_ptr;

 /***/
 /* Open the data files associated with the time period selected for this data set / */
 /* extension / version combination. */
 /***/

 ret_val = file_open (data_key, extension, version, btime_yr, btime_day, btime_sec,
 btime_nano, etime_yr, etime_day, etime_sec, etime_nano, 0);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from file_open routine.\n", ret_val);
 exit (-1);
 }

 /***/
 /* Find the position in the data file closest to the requested start time for this data set. */

example 4 example 4

 23 December 28, 2012

 /* Unlike real-time, if an error is encountered, the system should terminate - no need */
 /* to retry in anticipation of incoming data. */
 /***/

 ret_val = file_pos (data_key, extension, version, idf_data_ptr, btime_yr, btime_day,
 btime_sec, btime_nano, etime_yr, etime_day, etime_sec, etime_nano);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from file_pos.\n", ret_val);
 exit (-1);
 }

 /**/
 /* Find out the number of sensors defined for this virtual instrument. */
 /**/

 rval = read_idf (data_key, extension, version, (SDDAS_CHAR *) &num_sensor,
 _SEN, 0, 0, 1);
 if (rval < 0)
 {
 printf ("\n Error %ld from read_idf routine.\n", rval);
 exit (-1);
 }

 /***/
 /* Retrieve the raw units for the data. */
 /***/

 num_tbls = 0;
 tbls_to_apply = NULL;
 tbl_oper = NULL;

 /***/
 /* Get the data for all sensors. */
 /***/

 while (more_data)
 {
 for (sensor = 0; sensor < num_sensor; ++sensor)
 {
 /***/
 /* Advance to the next data set only if the last sensor is being processed to ensure */
 /* all samples which occur at the same time are processed simultaneously. */
 /***/

example 4 example 4

 24 December 28, 2012

 fwd = (sensor == num_sensor - 1) ? 1 : 0;
 ret_val = read_drec (data_key, extension, version, idf_data_ptr, sensor, fwd,

 full_swp);
 if (ret_val < 0)
 {
 printf ("\nError %d from read_drec.\n", ret_val);
 exit (-1);
 }

 /***/
 /* The sensor data was found within the time being processed. */
 /***/

 if (ret_val == ALL_OKAY || EXP_DATA->filled_data)
 {
 /**/
 /* If the time of the sample is past the requested end time, stop processing data. */
 /**/

 ret_time_sec = (EXP_DATA->bmilli + (EXP_DATA->bnano / 1000000)) / 1000;
 ret_time_nano = (EXP_DATA->bmilli % 1000) * 1000000 + EXP_DATA->bnano;

 if (EXP_DATA->byear > etime_yr ||
 (EXP_DATA->byear == etime_yr && EXP_DATA->bday > etime_day) ||
 (EXP_DATA->byear == etime_yr && EXP_DATA->bday == etime_day &&
 ret_time_sec > etime_sec) ||
 (EXP_DATA->byear == etime_yr && EXP_DATA->bday == etime_day &&
 ret_time_sec == etime_sec && ret_time_nano > etime_nano))
 {
 more_data = 0;
 break;
 }

 rcode = convert_to_units (data_key, extension, version, idf_data_ptr, sensor,
 SENSOR, 0, num_tbls, tbls_to_apply, tbl_oper,
 conv_data, 0, 0);
 if (rcode != ALL_OKAY)

 {
 printf ("\nError %d from convert_to_units.\n", rcode);
 exit (-1);

 }

 /**/
 /* Print the times for the sample being returned. */
 /**/

example 4 example 4

 25 December 28, 2012

 printf ("\n\nSENSOR %d's START TIME_MS = %ld", sensor,
 EXP_DATA->bmilli);
 printf ("\nSENSOR %d's START TIME_NS = %ld", sensor, EXP_DATA->bnano);
 printf ("\nSENSOR %d's END TIME_MS = %ld", sensor, EXP_DATA->emilli);
 printf ("\nSENSOR %d's END TIME_NS = %ld", sensor, EXP_DATA->enano);

 /**/
 /* Print the data, 6 values per row, in exponential format. */
 /**/

 for (k = 0; k < EXP_DATA->num_sample; ++k)
 {
 if (k % 6 == 0)
 printf ("\n");
 printf ("%10.2e ", conv_data[k]);
 }
 printf ("\n\n");
 }

 if (ret_val == LOS_STATUS || ret_val == NEXT_FILE_STATUS)
 {
 /***/
 /* Get the start time to use to get the next data file. */
 /***/

 rcode = next_file_start_time (data_key, extension, version, 0, &new_year,
 &new_day, &new_start_sec, &new_start_nsec);
 if (rcode != ALL_OKAY)
 {
 printf ("\n Error %d from next_file_start_time.\n", rcode);
 exit (-1);
 }

 rcode = reset_experiment_info (data_key, extension, version, new_year,
 new_day, new_start_sec, new_start_nsec,
 etime_yr, etime_day, etime_sec, etime_nano);
 if (rcode == NO_DATA)
 {
 more_data = 0;
 break;
 }

else if (rcode != ALL_OKAY)
 {
 printf ("\n Error %d from reset_experiment_info.\n", rcode);
 exit (-1);

example 4 example 4

 26 December 28, 2012

 }

 rcode = file_pos (data_key, extension, version, idf_data_ptr, new_year, new_day,
 new_start_sec, new_start_nsec, etime_yr, etime_day, etime_sec,
 etime_nano);
 if (rcode != ALL_OKAY)
 {
 printf ("\n Error %d from file_pos.\n", rcode);
 exit (-1);
 }
 }
 }
 }
 free_experiment_info();
}

example 5 example 5

 27 December 28, 2012

EXAMPLE 5

This example demonstrates the usage of most of the IDFS routines. The example was coded for
real-time, processing all sensors for the virtual instrument in question. The user can refer to the
previous coding examples to determine how to change this example to process post-time data or
single sensor data only.

#include <stdio.h>
#include <string.h>
#include "ret_codes.h"
#include "user_defs.h"
#include "libtrec_idfs.h"
#include "libVIDF.h"
#include "libCfg.h"
#include "libdb.h"

/* This routine processes real-time data for all RTLA sensors. */

void main (void)
{
 struct idf_data *EXP_DATA;
 register SDDAS_FLOAT *dptr, *frac;
 register SDDAS_SHORT loop, i;
 SDDAS_ULONG data_key;
 SDDAS_USHORT vnum;
 SDDAS_FLOAT *ret_data, *ret_frac, sen_min, sen_max, *base_data, *base_frac;
 SDDAS_FLOAT *center_ptr, *band_low, *band_high, actual_phi, *data_ptr;
 SDDAS_FLOAT start_range[6], stop_range[6];
 SDDAS_LONG btime_sec, btime_nsec, etime_sec, etime_nsec, base_sec, base_nano, base_pix;
 SDDAS_LONG res_sec, res_nano, *start_time_sec, *start_time_nano, offset_buf, rval;
 SDDAS_LONG *end_time_sec, *end_time_nano, *bpix, *epix, offset_unit, tbl_oper[2];
 SDDAS_SHORT sensor, ret_val, accum_bin_stat, num_sensor, *sen_numbers;
 SDDAS_SHORT *num_units, data_block, uind_raw, uind_base, buf_num, sen_units;
 SDDAS_SHORT num_bands, num_converted, rcode, fill_code, num_sen;
 SDDAS_SHORT btime_yr, btime_day, etime_yr, etime_day;
 SDDAS_SHORT *start_yr, *start_day, *end_yr, *end_day;
 SDDAS_CHAR extension[3], data_type, hdr_change, num_tbls, tbls_to_apply[2];
 SDDAS_CHAR *buf_stat, *ret_bin, *bin_stat, *base_bin, last_plot, num_center_band;
 SDDAS_CHAR dimen_status[6];
 char more_data = 1, first_time = 1;
 void *idf_data_ptr;

example 5 example 5

 28 December 28, 2012

 /**/
 /* Set the start and stop time (in this case to reflect real-time scenario) and select the */
 /* data file of interest ("" means default file is to be used). */
 /**/

 btime_yr = -1;
 btime_day = -1;
 btime_sec = -1;
 btime_nsec = -1;
 etime_yr = -1;
 etime_day = -1;
 etime_sec = -1;
 etime_nsec = -1;
 strcpy (extension,"");
 CfgInit ();
 dbInitialize ();
 init_idfs ();

 /***/
 /* Retrieve the key that is associated with the project, mission, experiment, instrument */
 /* and virtual instrument specified. */
 /***/

 ret_val = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from get_data_key routine.\n", ret_val);
 exit (-1);
 }
 get_version_number (&vnum);

 ret_val = create_idf_data_structure (&idf_data_ptr);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from create_idf_data_structure routine.\n", ret_val);
 exit (-1);
 }
 EXP_DATA = (struct idf_data *) idf_data_ptr;

 /***/
 /* The data will be collapsed over the scan dimension to squash the data over the */
 /* entire frequency range for this virtual instrument. */
 /***/

 dimen_status[0] = DIMEN_ON;

example 5 example 5

 29 December 28, 2012

 start_range[0] = 0.16;
 stop_range[0] = 0.9;
 start_range[1] = stop_range[1] = 0.0;
 start_range[2] = stop_range[2] = 0.0;
 start_range[3] = stop_range[3] = 0.0;
 start_range[4] = stop_range[4] = 0.0;
 start_range[5] = stop_range[5] = 0.0;
 dimen_status[1] = DIMEN_OFF;
 dimen_status[2] = DIMEN_OFF;
 dimen_status[3] = DIMEN_OFF;
 dimen_status[4] = DIMEN_OFF;
 dimen_status[5] = DIMEN_OFF;

 /***/
 /* Open the data files associated with the time period selected for this data set / */
 /* extension/version combination. */
 /***/

 ret_val = file_open (data_key, extension, vnum, btime_yr, btime_day, btime_sec,
 btime_nsec, etime_yr, etime_day, etime_sec, etime_nsec, 0);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from file_open routine.\n", ret_val);
 exit (-1);
 }

 /**/
 /* Find out the number of sensors defined for this virtual instrument. */
 /**/

 rval = read_idf (data_key, extension, vnum, (SDDAS_CHAR *) &num_sensor, _SEN, 0,
 0, 1);
 if (rval < 0)
 {
 printf ("\n Error %ld from read_idf routine.\n", rval);
 exit (-1);
 }

 /***/
 /* Get the data for all sensors. */
 /***/

 while (more_data)
 {

example 5 example 5

 30 December 28, 2012

 /***/
 /* Find the position in the data file closest to the requested start time for this data set.*/
 /* If the file has been positioned correctly, future calls to this routine just return the */
 /* ALL_OKAY status; otherwise, the routine keeps trying to read from the files */
 /* and to position the file pointers (records may not have been written to disk yet). */
 /***/
 rcode = file_pos (data_key, extension, vnum, idf_data_ptr, btime_yr, btime_day,
 btime_sec, btime_nsec, etime_yr, etime_day, etime_sec, etime_nsec);
 if (rcode == LOS_STATUS)
 more_data = 0;
 else if (rcode == NEXT_FILE_STATUS)
 {
 /***/
 /* For realtime processing, btime_sec is set to -1 so that when files are crossed, */
 /* the routines will position the file at the beginning of that next file. */
 /***/

 ret_val = reset_experiment_info (data_key, extension, vnum, -1,-1, -1, -1,
 etime_yr, etime_day, etime_sec, etime_nsec);
 if (ret_val != ALL_OKAY)
 {
 printf ("\nError %d from reset_experiment_info.\n", ret_val);
 exit (-1);
 }
 }
 else if (rcode != ALL_OKAY && rcode != EOF_STATUS)
 {
 printf ("\n Error %d from file_pos routine.\n", rcode);
 exit (-1);
 }

 /**/
 /* Some items need to be set just once. */
 /**/

 if (first_time)
 {
 first_time = 0;

 /***/
 /* Set the base reference time, location and duration for the data buffers. */
 /***/

 ret_val = read_drec (data_key, extension, vnum, idf_data_ptr, 0, 0, 0);

example 5 example 5

 31 December 28, 2012

 if (ret_val < 0)
 {
 printf ("\nError %d from read_drec.\n", ret_val);
 exit (-1);
 }

 base_sec = EXP_DATA->bmilli / 1000;
 base_nano = (EXP_DATA->bmilli % 1000) * 1000000 + EXP_DATA->bnano;
 base_pix = 0;
 res_sec = 9;
 res_nano = 216000000;
 set_time_values (vnum, EXP_DATA->byear, EXP_DATA->bday, base_sec,
 base_nano, base_pix, res_sec, res_nano);

 /***/
 /* Select sensor data in raw units for all sensors. */
 /***/

 num_tbls = 0;
 data_type = SENSOR;
 sen_min = VALID_MIN;
 sen_max = VALID_MAX;

 for (sensor = 0; sensor < num_sensor; ++sensor)
 {
 ret_val = fill_sensor_info (data_key, extension, vnum, sensor, sen_min, sen_max, num_tbls,
 tbls_to_apply, tbl_oper, data_type, 0);
 if (ret_val != ALL_OKAY)
 {
 printf ("\nError %d from fill_sensor_info.\n", ret_val);
 exit (-1);
 }
 }

 /***/
 /* Select sensor data in base units for all sensors. */
 /***/

 num_tbls = 2;
 tbls_to_apply[0] = 0;
 tbls_to_apply[1] = 1;
 tbl_oper[0] = 0;
 tbl_oper[1] = 3;

example 5 example 5

 32 December 28, 2012

 for (sensor = 0; sensor < num_sensor; ++sensor)
 {
 ret_val = fill_sensor_info (data_key, extension, vnum, sensor, sen_min, sen_max, num_tbls,
 tbls_to_apply, tbl_oper, data_type, 0);
 if (ret_val != ALL_OKAY)
 {
 printf ("\nError %d from fill_sensor_info.\n", ret_val);
 exit (-1);
 }
 }

 /***/
 /* Specify that 8 linear center bins from 0.16 to 0.86 (.1 delta) are to be created */
 /* and missing bins are to be left empty. No need to call SET_SCAN_INFO since*/
 /* raw sweep step values are desired for this sweeping instrument. Since */
 /* num_center_band is 0, the contents of tbl_oper and tbls_to_apply don't matter. */
 /***/

 num_center_band = 0;
 ret_val = set_bin_info (data_key, extension, vnum, VARIABLE_SWEEP,
 0.16, 0.86, 0.1, 8, LIN_SPACING, num_center_band,
 tbls_to_apply, tbl_oper, num_center_band,
 tbls_to_apply, tbl_oper, num_center_band,
 tbls_to_apply, tbl_oper, 'L', POINT_STORAGE, NO_BIN_FILL);
 if (ret_val != ALL_OKAY)
 {
 printf ("\nError %d from set_bin_info.\n", ret_val);
 exit (-1);
 }

 /**/
 /* The scan units should be in terms of frequency. */
 /**/

 num_tbls = 1;
 tbls_to_apply[0] = 0;
 tbl_oper[0] = 0;
 ret_val = set_scan_info (data_key, extension, vnum, num_tbls, tbls_to_apply, tbl_oper);
 if (ret_val != ALL_OKAY)
 {
 printf ("\nError %d from set_scan_info.\n", ret_val);
 exit (-1);
 }

example 5 example 5

 33 December 28, 2012

 /**/
 /* Since all sensors use the same scan range, any valid sensor number can be */
 /* passed in as the required argument. */
 /**/

 sensor = 0;
 ret_val = center_and_band_values (data_key, extension, vnum, idf_data_ptr, sensor,
 1, 1, ¢er_ptr, &band_low, &band_high,

 &num_bands, &num_converted);

 if (ret_val != ALL_OKAY && ret_val != CENTER_CONVERSION)
 {
 printf ("\nError %d from center_and_band_values.\n", ret_val);
 exit (-1);
 }

 /***/
 /* Specify that data will be collapsed for 2 units, but no PHI dimension and do */
 /* not interleave the data. */
 /***/

 ret_val = set_collapse_info (data_key, extension, vnum, 2, 360.0, &actual_phi, 0);
 if (ret_val != ALL_OKAY)
 {
 printf ("\nError %d from set_collapse_info.\n", ret_val);
 exit (-1);
 }
 }

 if (rcode == ALL_OKAY)
 {
 fill_code = fill_data (data_key, extension, vnum, idf_data_ptr, &sen_numbers, &ret_data,
 &ret_frac, &ret_bin, &bpix, &epix, &buf_stat, &num_sen,
 &num_units, &data_block, &start_yr, &start_day, &start_time_sec,
 &start_time_nano, &end_yr, &end_day, &end_time_sec,

 &end_time_nano, &hdr_change, 255);
 if (fill_code != ALL_OKAY && fill_code != LOS_STATUS &&
 fill_code != EOF_STATUS && fill_code != NEXT_FILE_STATUS)
 {
 printf ("\nError %d from fill_data.\n", fill_code);
 exit (-1);
 }

example 5 example 5

 34 December 28, 2012

 /***/
 /* Loop over all defined sensors. */
 /***/

 for (sensor = 0; sensor < num_sensor; ++sensor)
 {
 /**/
 /* Loop over sensors processed by the FILL_DATA routine. */
 /**/
 for (i = 0; i < num_sen; ++i)
 {
 if (*(sen_numbers + i) == sensor)
 {
 offset_unit = *(num_units + i) * NUM_BUFFERS * data_block;
 base_data = ret_data + offset_unit;
 base_frac = ret_frac + offset_unit;
 base_bin = ret_bin + offset_unit;

 num_tbls = 0;
 ret_val = units_index (data_key, extension, vnum, sensor, sen_min, sen_max,
 tbls_to_apply, tbl_oper, data_type, 0, &uind_raw,
 &sen_units, num_tbls);
 if (ret_val != ALL_OKAY)
 {
 printf ("\nError %d from units_index.\n", ret_val);
 exit (-1);
 }

 num_tbls = 2;
 tbls_to_apply[0] = 0;
 tbls_to_apply[1] = 1;
 tbl_oper[0] = 0;
 tbl_oper[1] = 3;

 ret_val = units_index (data_key, extension, vnum, sensor, sen_min, sen_max,
 tbls_to_apply, tbl_oper, data_type, 0, &uind_base,
 &sen_units, num_tbls);
 if (ret_val != ALL_OKAY)
 {
 printf ("\nError %d from units_index.\n", ret_val);
 exit (-1);
 }

example 5 example 5

 35 December 28, 2012

 for (buf_num = 0; buf_num < NUM_BUFFERS; ++buf_num)
 if (*(buf_stat + buf_num) == BUFFER_READY)
 {
 /***/
 /* Print the raw units data. */
 /***/

 offset_buf = buf_num * sen_units * data_block;
 offset_unit = uind_raw * data_block;
 dptr = base_data + offset_buf + offset_unit;
 frac = base_frac + offset_buf + offset_unit;
 bin_stat = base_bin + offset_buf + offset_unit;
 accum_bin_stat = 0;
 for (loop = 0; loop < data_block; ++loop)
 accum_bin_stat += *(bin_stat + loop);

 /***/
 /* Make sure there is some data in the buffers. Still check bin_stat */
 /* since frac will be 0.0 if bin_stat = 0. For this data set, it is known */
 /* that the sweep values are contiguous. */
 /***/

 if (accum_bin_stat != 0)
 {
 printf ("\n\n sensor %d information\n", sensor);
 printf ("\n start_pix = %ld", *(bpix + buf_num));
 printf ("\n end_pix = %ld", *(epix + buf_num));

 for (loop = 0; loop < data_block; ++loop)
 {
 if (*(bin_stat + loop) != 0)
 printf ("\n raw data[%d] = %10.2e from freq bin
 %.2f to %.2f",loop,*(dptr+loop) / *(frac+loop),
 *(band_low + loop), *(band_low + loop + 1));
 else
 printf ("\n raw data[%d] = %10.2e from freq bin
 %.2f to %.2f", loop, *(dptr + loop),
 *(band_low + loop), *(band_low + loop + 1));
 }
 }

 /***/
 /* Print the base units data. */
 /***/

example 5 example 5

 36 December 28, 2012

 offset_unit = uind_base * data_block;
 dptr = base_data + offset_buf + offset_unit;
 frac = base_frac + offset_buf + offset_unit;
 bin_stat = base_bin + offset_buf + offset_unit;
 accum_bin_stat = 0;

 for (loop = 0; loop < data_block; ++loop)
 accum_bin_stat += *(bin_stat + loop);

 if (accum_bin_stat != 0)
 {
 printf ("\n\n sensor %d information\n", sensor);
 printf ("\n start_pix = %ld", *(bpix + buf_num));
 printf ("\n end_pix = %ld", *(epix + buf_num));

 for (loop = 0; loop < data_block; ++loop)
 {
 if (*(bin_stat + loop) != 0)
 printf ("\n base data[%d] = %10.2e from freq bin
 %.2f to %.2f",loop,*(dptr+loop) / *(frac+loop),
 *(band_low + loop), *(band_low + loop + 1));
 else
 printf ("\n base data[%d] = %10.2e from freq bin
 %.2f to %.2f", loop, *(dptr + loop),
 *(band_low + loop), *(band_low + loop + 1));
 }
 }
 }
 }
 }
 }

 /**/
 /* Collapse the data over the scan dimension. */
 /**/

 for (buf_num = 0; buf_num < NUM_BUFFERS; ++buf_num)
 if (*(buf_stat + buf_num) == BUFFER_READY)
 {
 /***/
 /* Place the data for the current buffer into the matrix used to collapse data */
 /* over the theta and/or scan dimensions (no phi, mass or charge dimensions).*/
 /***/

example 5 example 5

 37 December 28, 2012

 ret_val = fill_theta_matrix (data_key, extension, vnum, num_sen,
 sen_numbers, ret_data, ret_frac,
 ret_bin, num_units, buf_num, sen_units);
 if (ret_val != ALL_OKAY)
 {
 printf ("\nError %d from fill_theta_matrix.\n", ret_val);
 exit (-1);
 }

 for (sensor = 0; sensor < num_sensor; ++sensor)
 {
 /***/
 /* Collapse over scan dimension for the raw data. The single value will */
 /* be set to -3.4e38 (OUTSIDE_MIN) if no data was present in the data */
 /* buffers for the sensor in question. */
 /***/

 ret_val = collapse_dimensions (data_key, extension, vnum, sensor, dimen_status,
 start_range, stop_range, STRAIGHT_AVG, 0,
 &data_ptr, 0, 1, 2, 0.0, 1, 0, 0, 0, 1, buf_num);
 if (ret_val != ALL_OKAY)
 {
 printf ("\nError %d from collapse_dimensions.\n", ret_val);
 exit (-1);
 }

 if (*data_ptr > OUTSIDE_MIN)
 printf ("\n data from collapsing raw units for sensor %d is %10.2e",
 sensor, *data_ptr);

 /***/
 /* Collapse over scan dimension for the base data. The single value will*/
 /* be set to -3.4e38 (OUTSIDE_MIN) if no data was present in the data */
 /* buffers for the sensor in question. */
 /***/

 last_plot = (sensor == num_sensor - 1) ? 1 : 0;
 ret_val = collapse_dimensions (data_key, extension, vnum, sensor, dimen_status,
 start_range, stop_range, STRAIGHT_AVG, 0,
 &data_ptr, 0, 1, 2, 0.0, 1, 0, 1, last_plot, 1, buf_num);
 if (ret_val != ALL_OKAY)
 {
 printf ("\nError %d from collapse_dimensions.\n", ret_val);
 exit (-1);
 }

example 5 example 5

 38 December 28, 2012

 if (*data_ptr > OUTSIDE_MIN)
 printf ("\n data from collapsing base units for sensor %d is %10.2e", sensor, *data_ptr);
 }
 }

 if (fill_code == LOS_STATUS)
 more_data = 0;
 else if (fill_code == NEXT_FILE_STATUS)
 {
 /***/
 /* For realtime processing, btime_sec is set to -1 so that when files are crossed, */
 /* the routines will position the file at the beginning of that next file. The */
 /* mandatory call to file_pos can be found at the top of while loop. */
 /***/

 ret_val = reset_experiment_info (data_key, extension, vnum, -1, -1, -1, -1,
 etime_yr, etime_day, etime_sec, etime_nsec);
 if (ret_val != ALL_OKAY)
 {
 printf ("\nError %d from reset_experiment_info.\n", ret_val);
 exit (-1);
 }
 }
 }
 }

 free_experiment_info();
}

All of the routines used within the above program are detailed in depth within sections 1R and 2R
of this manual. In all IDFS coding examples provided, the database assignment names for the
project, mission, experiment, instrument and virtual instrument are used to determine the data key
that is to be used for the data set in question.

example 6 example 6

 39 December 28, 2012

EXAMPLE 6

This example demonstrates how a spin’s worth of data can be acquired and processed.

#include <stdio.h>
#include <string.h>
#include "ret_codes.h"
#include "user_defs.h"
#include "libtrec_idfs.h"
#include "libCfg.h"
#include "libdb.h"

void main (int argc, char **argv)
{
 struct idf_data *EXP_DATA;
 register SDDAS_FLOAT *dptr, *frac;
 register SDDAS_SHORT loop, i;
 SDDAS_ULONG data_key;
 SDDAS_USHORT vnum;
 SDDAS_FLOAT *ret_data, *ret_frac, sen_min, sen_max, *base_data, *base_frac;
 SDDAS_FLOAT *center_ptr, *band_low, *band_high;
 SDDAS_DOUBLE frac_sec;
 SDDAS_LONG btime_sec, etime_sec;
 SDDAS_LONG *start_time_sec, *start_time_nano, *end_time_sec, *end_time_nano;
 SDDAS_LONG offset_unit, etime_nsec, btime_nsec, tbl_oper[5];
 SDDAS_SHORT sensor, ret_val, accum_bin_stat, *sen_numbers, num_sen;
 SDDAS_SHORT *num_units, data_block, uind_raw, sen_units;
 SDDAS_SHORT num_bands, num_converted, fill_code, btime_yr;
 SDDAS_SHORT btime_day, etime_yr, etime_day, *start_time_yr, *start_time_day;
 SDDAS_SHORT *end_time_yr, *end_time_day, spin_sen_ctrl;
 SDDAS_CHAR extension[3], data_type, hdr_change, num_tbls, err_str[200];
 SDDAS_CHAR *ret_bin, *bin_stat, *base_bin;
 SDDAS_CHAR tbls_to_apply[5], num_center_band;
 short hr, min, sec;
 char more_data = 1, first_time = 1;
 void *idf_data_ptr;

 btime_yr = 2002;
 btime_day = 301;
 btime_sec = (19 * 3600) + (30 * 60) + 0;
 btime_nsec = 0;
 etime_yr = 2002;
 etime_day = 301;
 etime_sec = (19 * 3600) + (30 * 60) + 20;
 etime_nsec = 0;

example 6 example 6

 40 December 28, 2012

 strcpy (extension,"");
 CfgInit();
 dbInitialize();
 init_idfs ();

 /***/
 /* Retreive the key that is associated with the project, mission, experiment, instrument */
 /* and virtual instrument specified. */
 /***/

ret_val = get_data_key ("CLUSTERII", "CLUSTER-2", "PEACE", "3DR", "CP3DRH",
 &data_key);

 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from get_data_key routine.\n", ret_val);
 exit (-1);
 }
 get_version_number (&vnum);

 /**/
 /* Create one instance of the data structure. */
 /**/

 ret_val = create_idf_data_structure (&idf_data_ptr);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from create_idf_data_structure routine.\n", ret_val);
 exit (-1);
 }

 /***/
 /* Open the data files associated with the time period selected for this data set / */
 /* extension / version combination. */
 /***/

 ret_val = file_open (data_key, extension, vnum, btime_yr, btime_day, btime_sec,
 btime_nsec, etime_yr, etime_day, etime_sec, etime_nsec, 0);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from file_open routine.\n", ret_val);
 exit (-1);
 }

example 6 example 6

 41 December 28, 2012

 /***/
 /* Find the position in the data file closest to the requested start time for this data set. */
 /* Unlike real-time, if an error is encountered, the system should terminate - no need */
 /* to retry in anticipation of incoming data. */
 /***/

 ret_val = file_pos (data_key, extension, vnum, idf_data_ptr, btime_yr, btime_day,
 btime_sec, btime_nsec, etime_yr, etime_day, etime_sec, etime_nsec);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from file_pos routine.\n", ret_val);
 exit (-1);
 }

 spin_sen_ctrl = 0; /* sensor 0 as time controller */
 ret_val = start_of_spin (data_key, extension, vnum, spin_sen_ctrl, etime_yr, etime_day,
 etime_sec, etime_nsec);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from start_of_spin routine.\n", ret_val);
 exit (-1);
 }

 /***/
 /* Get the data for all sensors. */
 /***/

 EXP_DATA = (struct idf_data *) idf_data_ptr;
 while (more_data)
 {
 /**/
 /* Some items need to be set just once. */
 /**/

 if (first_time)
 {
 /***/
 /* Select sensor data for sensor zero. */
 /***/

 first_time = 0;
 num_tbls = 0;
 tbls_to_apply[0] = 1;
 tbl_oper[0] = 0;
 data_type = SENSOR;

example 6 example 6

 42 December 28, 2012

 sen_min = VALID_MIN;
 sen_max = VALID_MAX;
 sensor = spin_sen_ctrl;
 ret_val = fill_sensor_info (data_key, extension, vnum, sensor, sen_min, sen_max, num_tbls,
 tbls_to_apply, tbl_oper, data_type, 0);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from fill_sensor_info routine.\n", ret_val);
 exit (-1);
 }

 /***/
 /* Create the data bins. */
 /***/

 num_center_band = 0;
 ret_val = set_bin_info (data_key, extension, vnum, VARIABLE_SWEEP, 0.0, 93.0, 1.0,
 93, LIN_SPACING, num_center_band, tbls_to_apply, tbl_oper,
 num_center_band, tbls_to_apply, tbl_oper,
 num_center_band, tbls_to_apply, tbl_oper,
 'L', POINT_STORAGE, NO_BIN_FILL);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from set_bin_info routine.\n", ret_val);
 exit (-1);
 }

 /**/
 /* The scan units should be in terms of electron volts. */
 /**/

 num_tbls = 0;
 tbls_to_apply[0] = 0;
 tbl_oper[0] = 0;
 ret_val = set_scan_info (data_key, extension, vnum, num_tbls, tbls_to_apply, tbl_oper);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from set_scan_info routine.\n", ret_val);
 exit (-1);
 }

 /**/
 /* Since all sensors use the same scan range, any valid sensor number can be */
 /* passed in as the required argument. */
 /**/

example 6 example 6

 43 December 28, 2012

 ret_val = center_and_band_values (data_key, extension, vnum, idf_data_ptr, sensor, 1, 1,
 ¢er_ptr, &band_low, &band_high, &num_bands,
 &num_converted);
 if (ret_val != ALL_OKAY && ret_val != CENTER_CONVERSION)
 {
 printf ("\n Error %d from center_and_band_values routine.\n", ret_val);
 exit (-1);
 }
 }

 fill_code = spin_data (data_key, extension, vnum, idf_data_ptr, &sen_numbers,

 &ret_data, &ret_frac, &ret_bin, &num_sen, &num_units,
 &data_block, &start_time_yr, &start_time_day, &start_time_sec,

 &start_time_nano, &end_time_yr, &end_time_day,
 &end_time_sec, &end_time_nano, &hdr_change);
 if (fill_code != ALL_OKAY)
 {
 printf ("\n Error %d from spin_data routine.\n", ret_val);
 exit (-1);
 }

 /**/
 /* Loop over sensors processed by the SPIN_DATA routine. */
 /**/

 for (i = 0; i < num_sen; ++i)
 {
 if (*(sen_numbers + i) == sensor)
 {
 offset_unit = *(num_units + i) * data_block;
 base_data = ret_data + offset_unit;
 base_frac = ret_frac + offset_unit;
 base_bin = ret_bin + offset_unit;

 num_tbls = 0;
 tbls_to_apply[0] = 1;
 tbl_oper[0] = 0;
 ret_val = units_index (data_key, extension, vnum, sensor, sen_min, sen_max, tbls_to_apply,
 tbl_oper, data_type, 0, &uind_raw, &sen_units, num_tbls);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from units_index routine.\n", ret_val);
 exit (-1);
 }

example 6 example 6

 44 December 28, 2012

 if (fill_code == ALL_OKAY)
 {
 /***/
 /* Print the raw units data. */
 /***/

 offset_unit = uind_raw * data_block;
 dptr = base_data + offset_unit;
 frac = base_frac + offset_unit;
 bin_stat = base_bin + offset_unit;
 accum_bin_stat = 0;

 for (loop = 0; loop < data_block; ++loop)
 accum_bin_stat += *(bin_stat + loop);

 /**/
 /* Make sure there is some data in the buffers. Still check */
 /* bin_stat since frac will be 0.0 if bin_stat = 0. For this */
 /* data set, it is known that the sweep values are contiguous. */
 /**/

 if (accum_bin_stat != 0)
 {
 frac_sec = *start_time_nano / 1000000000.0;
 printf ("\nTIME %04d %03d ", *start_time_yr, *start_time_day);
 hr = *start_time_sec / 3600;
 sec = *start_time_sec % 3600;
 min = sec / 60;
 sec = sec % 60;
 printf ("%02d %02d %02d %9.6f", hr, min, sec, frac_sec);

 for (loop = 0; loop < data_block; ++loop)
 {
 if (*(bin_stat + loop) != 0)
 printf ("\n%8.3f %3.0f",*(dptr+loop) / *(frac+loop), (float) loop);
 else
 printf ("\n%10.2e %3.0f", *(dptr + loop), (float) loop);
 }
 }
 }
 }
 }

example 6 example 6

 45 December 28, 2012

 if (*start_time_yr == etime_yr && *start_time_day == etime_day &&
 *start_time_sec > etime_sec)
 more_data = 0;
 else if (*start_time_yr == etime_yr && *start_time_day == etime_day &&
 *start_time_sec == etime_sec && *start_time_nano > etime_nsec)
 more_data = 0;
 }

 free_experiment_info();
}

example 6 example 6

 46 December 28, 2012

example 7 example 7

 47 December 28, 2012

EXAMPLE 7

This example demonstrates how a programmer would go about developing a program that utilizes
the SCF software. The data that is returned is displayed to the screen, but these values could be
sent to a file to be used by another program or some other action could be taken once the results
were retrieved.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "SCF_defs.h"
#include "SCF_file_defs.h"
#include "libbase_SCF.h"
#include "libCfg.h"
#include "libdb.h"

void main (int argc, char **argv)
{
 struct scf_data *SCF_DATA;
 register SDDAS_LONG i;
 SDDAS_FLOAT *dptr, *stop_loop;
 SDDAS_DOUBLE time_value;
 SDDAS_LONG btime_sec, etime_sec, ret_time_sec, ret_time_nano;
 SDDAS_LONG etime_nano, btime_nano, num_output, *intptr, *dimen;
 SDDAS_USHORT scf_vnum;
 SDDAS_SHORT ret_val, btime_yr, btime_day, etime_yr, etime_day;
 SDDAS_CHAR filename[SCF_FILENAME];
 char more_data = 1;
 void *scf_data_ptr;

 /**/
 /* Set the time for processing. */
 /**/

 btime_yr = 1992;
 btime_day = 217;
 btime_sec = 32340;
 btime_nano = 0;

 etime_yr = 1992;
 etime_day = 217;
 etime_sec = 32342;
 etime_nano = 0;

 strcpy (filename, "TMMO_EXAMPLE");

example 7 example 7

 48 December 28, 2012

 CfgInit ();
 dbInitialize ();
 init_scf ();

 /**/
 /* Open the SCF file and all input data sets. */
 /**/

 scf_version_number (&scf_vnum);
 ret_val = scf_open (filename, scf_vnum, btime_yr, btime_day, btime_sec, btime_nano,
 etime_yr, etime_day, etime_sec, etime_nano);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from scf_open routine.\n", ret_val);
 exit (-1);
 }

 /**/
 /* Position the input data sets at the requested start time. */
 /**/

 ret_val = scf_position (filename, scf_vnum, btime_yr, btime_day, btime_sec,
 btime_nano, etime_yr, etime_day, etime_sec, etime_nano);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from scf_position routine.\n", ret_val);
 exit (-1);
 }

 /**/
 /* Create one instance of the data structure. */
 /**/

 ret_val = create_scf_data_structure (filename, scf_vnum, &scf_data_ptr);
 if (ret_val != ALL_OKAY)
 {
 printf("\n Error %d from create_scf_data_structure routine.\n",ret_val);
 exit (-1);
 }
 SCF_DATA = (struct scf_data *) scf_data_ptr;

 /**/
 /* Find the input source with the fastest sample rate. */
 /**/

example 7 example 7

 49 December 28, 2012

 time_value = 0.0;

 ret_val = scf_sample_rate (filename, scf_vnum, SCF_DELTA_T, time_value,
 SCF_MEASURE_LAT_TM);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from scf_sample_rate routine.\n", ret_val);
 exit (-1);
 }

 /**/
 /* Determine the number of output variables being returned. */
 /**/

 ret_val = read_scf (filename, scf_vnum, S_NUM_OUTPUT, NOT_USED,
 (SDDAS_CHAR *) &num_output);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from read_scf routine.\n", ret_val);
 exit (-1);
 }

 intptr = (SDDAS_LONG *) calloc ((size_t) num_output, sizeof (SDDAS_LONG));
 if (intptr == 0)
 {
 printf ("\n Error from calloc system call.\n");
 exit (-1);
 }

 /**/
 /* Retrieve the "dimensionality" of the output variables. */
 /**/

 for (dimen = intptr, i = 0; i < num_output; ++i, ++dimen)
 {
 ret_val = read_scf (filename, scf_vnum, S_OUTPUT_DIMENSION, i,
 (SDDAS_CHAR *) dimen);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from read_scf routine.\n", ret_val);
 exit (-1);
 }
 }
 dimen = intptr;

example 7 example 7

 50 December 28, 2012

 /**/
 /* Evaluate the algorithm, retrieving the output until the requested end time has been */
 /* reached. */
 /**/

 while (more_data)
 {
 ret_val = scf_output_data (filename, scf_vnum, scf_data_ptr);
 if (ret_val != ALL_OKAY && ret_val != SCF_TERMINATE)
 {
 printf ("\n Error %d from scf_output_data routine.\n", ret_val);
 exit (-1);
 }

 printf ("\n\nSTART YEAR = %d START DAY = %d", SCF_DATA->byear,
 SCF_DATA->bday);
 printf ("\nSTART TIME_MS = %ld START TIME_NS = %ld", SCF_DATA->bmilli,
 SCF_DATA->bnano);
 printf ("\nEND YEAR = %d END DAY = %d", SCF_DATA->eyear,SCF_DATA->eday);
 printf ("\nEND TIME_MS = %ld END TIME_NS = %ld", SCF_DATA->emilli,
 SCF_DATA->enano);

 /***/
 /* Print the output variables returned. */
 /***/

 for (i = 0; i < SCF_DATA->num_output; ++i)
 {
 dptr = SCF_DATA->output_data + *(SCF_DATA->output_index + i);
 stop_loop = dptr + *(SCF_DATA->output_length + i);

 /***/
 /* Print out scalar output only. */
 /***/

 if (*(dimen + i) == 0)
 for (; dptr < stop_loop; ++dptr)
 printf ("\nOutput Variable %ld = %e", i, *dptr);
 }

 /***/
 /* Processing must be stopped due to data not being online. */
 /***/

example 7 example 7

 51 December 28, 2012

 if (ret_val == SCF_TERMINATE)
 {
 more_data = 0;
 break;
 }

 /***/
 /* End time has been reached? Compare against the end time of the iteration since */
 /* requested end time could fall between the time range processed. */
 /***/

 ret_time_sec = (SCF_DATA->emilli + (SCF_DATA->enano / 1000000)) / 1000;
 ret_time_nano = (SCF_DATA->emilli % 1000) * 1000000 + SCF_DATA->enano;

 if (SCF_DATA->eyear > etime_yr ||
 (SCF_DATA->eyear == etime_yr && SCF_DATA->eday > etime_day) ||
 (SCF_DATA->eyear == etime_yr && SCF_DATA->eday == etime_day &&
 ret_time_sec > etime_sec) ||
 (SCF_DATA->eyear == etime_yr && SCF_DATA->eday == etime_day &&
 ret_time_sec == etime_sec && ret_time_nano > etime_nano))
 {
 more_data = 0;
 break;
 }
 }

 free_scf_info ();
 exit (0);
}

example 7 example 7

 52 December 28, 2012

example 8 example 8

 53 December 28, 2012

EXAMPLE 8

This example demonstrates how a programmer would go about developing a program that utilizes
the SCF software to return time-averaged data.

#include <stdio.h>
#include <string.h>
#include "SCF_defs.h"
#include "user_defs.h"
#include "libbase_SCF.h"
#include "libavg_SCF.h"
#include "libCfg.h"
#include "libdb.h"

void main (int argc, char **argv)
{
 struct scf_data *SCF_DATA;
 register SDDAS_LONG i, loop, buf_num;
 register SDDAS_FLOAT *dptr, *frac;
 SDDAS_DOUBLE frac_sec;
 SDDAS_FLOAT *ret_data, *ret_frac, *base_data, *base_frac;
 SDDAS_FLOAT time_frac, data_min, data_max, *center_bin, *bin_low, *bin_high;
 SDDAS_ULONG buf_zero_loc;
 SDDAS_LONG stime_sec, stime_nano, end_time_sec, end_time_nano, offset_unit;
 SDDAS_LONG btime_sec, btime_nano, etime_sec, etime_nano, offset_buf;
 SDDAS_LONG base_sec, base_nano, res_sec, res_nano, base_pix, output_var;
 SDDAS_LONG dependent_var, accum_bin_stat, block_size, *bpix, *epix;
 SDDAS_LONG num_output, *output_numbers, *output_size, num_select, output_ind;
 SDDAS_LONG time_msec, num_bands;
 SDDAS_USHORT scf_vnum;
 SDDAS_SHORT ret_val, btime_yr, btime_day, etime_yr, etime_day, end_time_yr , ret_code;
 SDDAS_SHORT base_yr, base_day, hr, min, sec, stime_yr, stime_day, end_time_day ;
 SDDAS_CHAR filename[SCF_FILENAME], *ret_bin, *base_bin;
 SDDAS_CHAR *buf_stat, *bin_stat;
 char more_data = 1;
 void *scf_data_ptr;

 /**/
 /* Set the time for processing. */
 /**/

 btime_yr = 1992;
 btime_day = 217;
 btime_sec = 32340;
 btime_nano = 0;

example 8 example 8

 54 December 28, 2012

 etime_yr = 1992;
 etime_day = 217;
 etime_sec = 32342;
 etime_nano = 0;

 strcpy (filename, "TMMO_EXAMPLE");
 CfgInit ();
 dbInitialize ();
 init_scf ();

 /**/
 /* Open the SCF file and all input data sets. */
 /**/

 scf_version_number (&scf_vnum);
 ret_val = scf_open (filename, scf_vnum, btime_yr, btime_day, btime_sec, btime_nano,
 etime_yr, etime_day, etime_sec, etime_nano);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from scf_open routine.\n", ret_val);
 exit (-1);
 }

 /**/
 /* Position the input data sets at the requested start time. */
 /**/

 ret_val = scf_position (filename, scf_vnum, btime_yr, btime_day, btime_sec,
 btime_nano, etime_yr, etime_day, etime_sec, etime_nano);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from scf_position routine.\n", ret_val);
 exit (-1);
 }

 /**/
 /* Create one instance of the data structure. */
 /**/

 ret_val = create_scf_data_structure (filename, scf_vnum, &scf_data_ptr);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from create_scf_data_structure routine.\n", ret_val);
 exit (-1);
 }

example 8 example 8

 55 December 28, 2012

 SCF_DATA = (struct scf_data *) scf_data_ptr;

 /**/
 /* Find the input source with the fastest sample rate. */
 /**/

 time_frac = 0.0;
 ret_val = scf_sample_rate (filename, scf_vnum, SCF_DELTA_T, time_frac,
 SCF_MEASURE_LAT_TM);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from scf_sample_rate routine.\n", ret_val);
 exit (-1);
 }

 /***/
 /* Set the base reference time, location and duration for the data buffers. */
 /***/

 ret_val = scf_algorithm_start (filename, scf_vnum, &base_yr, &base_day,
 &base_sec, &base_nano, &res_sec, &res_nano);
 if (ret_val < 0)
 {
 printf ("\n Error %d from scf_algorithm_start routine.\n", ret_val);
 exit (-1);
 }

 base_pix = 0;
 scf_time_reference (scf_vnum, base_yr, base_day, base_sec, base_nano,
 base_pix, res_sec, res_nano);

 /***/
 /* Create the data bins for output variable zero. */
 /***/

 output_var = 0;
 dependent_var = -1;
 ret_val = scf_bin_info (filename, scf_vnum, output_var, FIXED_SWEEP,
 0.0, 0.0, 1, LIN_SPACING, dependent_var,
 dependent_var, dependent_var, ' ', POINT_STORAGE);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from scf_bin_info routine.\n", ret_val);
 exit (-1);
 }

example 8 example 8

 56 December 28, 2012

 /***/
 /* Select output variable zero, which is known to be scalar, so no dependent */
 /* variable needed. */
 /***/

 data_min = VALID_MIN;
 data_max = VALID_MAX;
 ret_val = scf_output_select (filename, scf_vnum, output_var, data_min, data_max,
 dependent_var);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from scf_output_select routine.\n", ret_val);
 exit (-1);
 }

 /**/
 /* Evaluate the algorithm, retrieving the output until the requested end time is reached. */
 /**/

 while (more_data)
 {
 ret_code = scf_time_average (filename, scf_vnum, scf_data_ptr, &ret_data, &ret_frac,
 &ret_bin, &bpix, &epix, &buf_stat, &stime_yr, &stime_day,
 &stime_sec, &stime_nano, &end_time_yr, &end_time_day,
 &end_time_sec, &end_time_nano, &num_output,
 &output_numbers, &output_size);
 if (ret_code != ALL_OKAY && ret_code != SCF_TERMINATE)
 {
 printf ("\n Error %d from scf_time_average routine.\n", ret_code);
 exit (-1);
 }

 /**/
 /* Loop over output variables processed by scf_time_average(). */
 /**/

 for (i = 0; i < num_output; ++i)
 {
 if (*(output_numbers + i) == output_var)
 {
 ret_val = scf_output_center_and_bands (filename, scf_vnum, output_var,
 ¢er_bin, &bin_low, &bin_high, &num_bands);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from scf_output_center_and_bands routine.\n", ret_val);

example 8 example 8

 57 December 28, 2012

 exit (-1);
 }
 ret_val = scf_output_data_index (filename, scf_vnum, output_var, data_min, data_max,
 dependent_var, &num_select, &output_ind, &buf_zero_loc);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from scf_output_data_index routine.\n", ret_val);
 exit (-1);
 }

 /**/
 /* Set pointers to the beginning of the first buffer for the selected output variable.*/
 /**/

 base_data = ret_data + buf_zero_loc;
 base_frac = ret_frac + buf_zero_loc;
 base_bin = ret_bin + buf_zero_loc;
 block_size = *(output_size + i);

 for (buf_num = 0; buf_num < NUM_BUFFERS; ++buf_num)
 if (*(buf_stat + buf_num) == BUFFER_READY)
 {
 /**/
 /* Point to the buffer being processed, then point to the definition */
 /* being processed. */
 /**/

 offset_buf = buf_num * num_select * block_size;
 offset_unit = output_ind * block_size;

 dptr = base_data + offset_buf + offset_unit;
 frac = base_frac + offset_buf + offset_unit;
 bin_stat = base_bin + offset_buf + offset_unit;
 accum_bin_stat = 0;

 for (loop = 0; loop < block_size; ++loop)
 accum_bin_stat += *(bin_stat + loop);

 /**/
 /* Make sure there is some data in the buffers. For this data, the bins are */
 /* contiguous since FIXED_SWEEP LIN_SPACING was utilized for */
 /* scf_bin_info(). */
 /**/

example 8 example 8

 58 December 28, 2012

 if (accum_bin_stat != 0)
 {
 frac_sec = stime_nano / 1000000000.0;
 hr = stime_sec / 3600;
 sec = stime_sec % 3600;
 min = sec / 60;
 sec = sec % 60;
 time_msec = stime_sec * 1000 + (stime_nano / 1000000);
 printf ("\nTIME %04d %03d ", stime_yr, stime_day);
 printf ("%02d %02d %02d %9.6f", hr, min, sec, frac_sec);

 for (loop = 0; loop < block_size; ++loop)
 {
 if (*(bin_stat + loop) != 0)
 printf ("\n%e bin_low = %e bin_high = %e",*(dptr+loop) / *(frac+loop),
 *(bin_low + loop), *(bin_low + loop + 1));
 else
 printf ("\n%10.2e bin_low = %e bin_high = %e", *(dptr + loop),
 *(bin_low + loop), *(bin_low + loop + 1));
 }
 }
 }
 }
 }

 /***/
 /* Processing must terminate due to data not being on-line. */
 /***/
 if (ret_code == SCF_TERMINATE)
 break;

 /***/
 /* End time has been reached? Compare against the end time of the iteration since */
 /* requested end time could fall between the time range processed. */
 /***/

 if (end_time_yr == etime_yr && end_time_day == etime_day && end_time_sec > etime_sec)
 break;
 else if (end_time_yr == etime_yr && end_time_day == etime_day &&
 end_time_sec == etime_sec && end_time_nano > etime_nano)
 break;
 }
 free_scf_info ();
 exit (0);
}

example 9 example 9

 59 December 28, 2012

EXAMPLE 9

This example demonstrates how a programmer would go about developing a program that utilizes
the SCF software to return sample-averaged data.

#include <stdio.h>
#include <string.h>
#include "SCF_defs.h"
#include "user_defs.h"
#include "libbase_SCF.h"
#include "libavg_SCF.h"
#include "libCfg.h"
#include "libdb.h"

void main (int argc, char **argv)
{
 struct scf_data *SCF_DATA;
 register SDDAS_LONG i, loop;
 register SDDAS_FLOAT *dptr, *frac;
 SDDAS_DOUBLE frac_sec;
 SDDAS_FLOAT *ret_data, *ret_frac, *base_data, *base_frac;
 SDDAS_FLOAT time_frac, data_min, data_max, *center_bin, *bin_low, *bin_high;
 SDDAS_ULONG buf_zero_loc;
 SDDAS_LONG stime_sec, stime_nano, end_time_sec, end_time_nano, offset_unit;
 SDDAS_LONG btime_sec, btime_nano, etime_sec, etime_nano, time_msec, num_bands ;
 SDDAS_LONG dependent_var, accum_bin_stat, block_size, output_var;
 SDDAS_LONG num_output, *output_numbers, *output_size, num_select, output_ind;
 SDDAS_USHORT scf_vnum;
 SDDAS_SHORT ret_code, ret_val, btime_yr, btime_day, etime_yr, etime_day;
 SDDAS_SHORT hr, min, sec, stime_yr, stime_day, end_time_yr, end_time_day;
 SDDAS_CHAR filename[SCF_FILENAME], *ret_bin, *base_bin, *bin_stat;
 char more_data = 1;
 void *scf_data_ptr;

 /**/
 /* Set the time for processing. */
 /**/

 btime_yr = 1992;
 btime_day = 217;
 btime_sec = 32340;
 btime_nano = 0;

 etime_yr = 1992;
 etime_day = 217;

example 9 example 9

 60 December 28, 2012

 etime_sec = 32342;
 etime_nano = 0;
 strcpy (filename, "TMMO_EXAMPLE");
 CfgInit ();
 dbInitialize ();
 init_scf ();

 /**/
 /* Open the SCF file and all input data sets. */
 /**/

 scf_version_number (&scf_vnum);
 ret_val = scf_open (filename, scf_vnum, btime_yr, btime_day, btime_sec, btime_nano,
 etime_yr, etime_day, etime_sec, etime_nano);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from scf_open routine.\n", ret_val);
 exit (-1);
 }

 /**/
 /* Position the input data sets at the requested start time. */
 /**/

 ret_val = scf_position (filename, scf_vnum, btime_yr, btime_day, btime_sec,
 btime_nano, etime_yr, etime_day, etime_sec, etime_nano);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from scf_position routine.\n", ret_val);
 exit (-1);
 }

 /**/
 /* Create one instance of the data structure. */
 /**/

 ret_val = create_scf_data_structure (filename, scf_vnum, &scf_data_ptr);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from create_scf_data_structure routine.\n", ret_val);
 exit (-1);
 }
 SCF_DATA = (struct scf_data *) scf_data_ptr;

example 9 example 9

 61 December 28, 2012

 /**/
 /* Find the input source with the fastest sample rate. */
 /**/
 time_frac = 0.0;
 ret_val = scf_sample_rate (filename, scf_vnum, SCF_DELTA_T, time_frac,
 SCF_MEASURE_LAT_TM);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from scf_sample_rate routine.\n", ret_val);
 exit (-1);
 }

 /***/
 /* Create the data bins for output variable zero. */
 /***/
 output_var = 0;
 dependent_var = -1;
 ret_val = scf_bin_info (filename, scf_vnum, output_var, FIXED_SWEEP,
 0.0, 0.0, 1, LIN_SPACING, dependent_var,
 dependent_var, dependent_var, ' ', POINT_STORAGE);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from scf_bin_info routine.\n", ret_val);
 exit (-1);
 }

 /***/
 /* Select output variable zero, which is known to be scalar, so no dependent */
 /* variable needed. */
 /***/

 data_min = VALID_MIN;
 data_max = VALID_MAX;
 ret_val = scf_output_select (filename, scf_vnum, output_var, data_min, data_max,
 dependent_var);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from scf_output_select routine.\n", ret_val);
 exit (-1);
 }

 /**/
 /* Evaluate the algorithm, averaging two iterations of the algorithm until the requested */
 /* end time has been reached. */
 /**/

example 9 example 9

 62 December 28, 2012

 while (more_data)
 {
 ret_code = scf_sample_average (filename, scf_vnum, scf_data_ptr, 2, &ret_data, &ret_frac,
 &ret_bin, &stime_yr, &stime_day, &stime_sec, &stime_nano,
 &end_time_yr, &end_time_day, &end_time_sec, &end_time_nano,
 &num_output, &output_numbers, &output_size);
 if (ret_code != ALL_OKAY && ret_code != SCF_TERMINATE)
 {
 printf ("\n Error %d from scf_sample_average routine.\n", ret_code);
 exit (-1);
 }

 /***/
 /* Loop over output variables processed by scf_sample_average(). */
 /***/

 for (i = 0; i < num_output; ++i)
 {
 if (*(output_numbers + i) == output_var)
 {
 ret_val = scf_output_center_and_bands (filename, scf_vnum, output_var,
 ¢er_bin, &bin_low, &bin_high, &num_bands);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from scf_output_center_and_bands routine.\n", ret_val);
 exit (-1);
 }

 ret_val = scf_output_data_index (filename, scf_vnum, output_var, data_min, data_max,
 dependent_var, &num_select, &output_ind,
 &buf_zero_loc);
 if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d from scf_output_data_index routine.\n", ret_val);
 exit (-1);
 }

 /***/
 /* Set pointers to the beginning of the data for the selected output variable. */
 /***/

 base_data = ret_data + buf_zero_loc;
 base_frac = ret_frac + buf_zero_loc;
 base_bin = ret_bin + buf_zero_loc;
 block_size = *(output_size + i);

example 9 example 9

 63 December 28, 2012

 /**/
 /* Point to the definition being processed. */
 /**/

offset_unit = output_ind * block_size;
 dptr = base_data + offset_unit;
 frac = base_frac + offset_unit;
 bin_stat = base_bin + offset_unit;
 accum_bin_stat = 0;

 for (loop = 0; loop < block_size; ++loop)
 accum_bin_stat += *(bin_stat + loop);

 /***/
 /* Make sure there is some data in the buffer. */
 /***/

 if (accum_bin_stat != 0)
 {
 frac_sec = stime_nano / 1000000000.0;
 hr = stime_sec / 3600;
 sec = stime_sec % 3600;
 min = sec / 60;
 sec = sec % 60;
 printf ("\nTIME %04d %03d ", stime_yr, stime_day);
 printf ("%02d %02d %02d %9.6f", hr, min, sec, frac_sec);

 for (loop = 0; loop < block_size; ++loop)
 {
 if (*(bin_stat + loop) != 0)
 printf ("\n%e",*(dptr+loop) / *(frac+loop));
 else
 printf ("\n%10.2e", *(dptr + loop));
 }
 }
 }
 }

 /***/
 /* Processing must terminate due to data not being on-line. */
 /***/

 if (ret_code == SCF_TERMINATE)
 break;

example 9 example 9

 64 December 28, 2012

 /***/
 /* End time has been reached? Compare against the end time of the iteration since */
 /* requested end time could fall between the time range processed. */
 /***/

 if (end_time_yr == etime_yr && end_time_day == etime_day && end_time_sec > etime_sec)
 break;
 else if (end_time_yr == etime_yr && end_time_day == etime_day &&
 end_time_sec == etime_sec && end_time_nano > etime_nano)
 break;
 }

 free_scf_info ();
 exit (0);
}

adjust_time (1R) adjust_time (1R)

 65 December 28, 2012

ADJUST_TIME
 function - adjusts the time components if a year/day boundary has been crossed

SYNOPSIS

#include "libbase_idfs.h"

void adjust_time (SDDAS_SHORT *year, SDDAS_SHORT *day, SDDAS_LONG *time,
 SDDAS_CHAR time_unit)

ARGUMENTS

year - the year time component
day - the day of year time component
time - the time of day time component
time_unit - flag which specifies the time unit for the time argument

1 – the time of day component is specified in seconds
 2 – the time of day component is specified in milliseconds

DESCRIPTION

Adjust_time is the IDFS routine that will correct time components when a day boundary or
boundaries have been crossed. Year boundaries and leap years are taken into account
during the calculation. If the time values are correct as is, the time values are not modified
in any way.

ERRORS

This routine returns no status or error codes.

BUGS

None

EXAMPLES

Correct the time values in case the time of day value represents more than a day's worth of
milliseconds. Assume that time values have already been set.

#include "libbase_idfs.h"

SDDAS_SHORT year, day;
SDDAS_LONG tod_milli;
SDDAS_CHAR time_unit;

time_unit = 2;
adjust_time (&year, &day, &tod_milli, time_unit);

adjust_time (1R) adjust_time (1R)

 66 December 28, 2012

calc_time_resolution (1R) calc_time_resolution (1R)

 67 December 28, 2012

 CALC_TIME_RESOLUTION
function - returns the maximum temporal resolution allowed by the selected data set

SYNOPSIS

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT calc_time_resolution (SDDAS_ULONG data_key,

 SDDAS_CHAR *exten, SDDAS_USHORT version,
 void *idf_data_ptr, SDDAS_SHORT num_sweeps,
 SDDAS_LONG *res_sec, SDDAS_LONG *res_nsec)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file names when

 default files are not to be used, otherwise a null string
version - IDFS data set identification number which allows for multiple

 openings of the same data set
idf_data_ptr - pointer to the idf_data structure that is to hold sensor data and

 pertinent ancillary data for the data set of interest
num_sweeps - the number of sweeps / spins to use to calculate the maximum

 temporal resolution
– negative value indicates spins are to be utilized for the
 calculation
– positive value indicates sweeps are to be utilized for the
 calculation

res_sec - the temporal resolution expressed in seconds
res_nsec - the temporal resolution residual of seconds expressed in

 nanoseconds
calc_time_resolution - routine status (see TABLE 1)

 TABLE 1. Status Codes Returned for CALC_TIME_RESOLUTION

STATUS CODE EXPLANATION OF STATUS
CALC_TRES_NOT_FOUND the requested data_key, exten, version combination has no memory allocated

for processing (user did not call file_open for this combination)
WRONG_HEADER_FORMAT multi-dimensional IDFS data storage is not supported by this module
ALL_OKAY routine terminated successfully

DESCRIPTION

Calc_time_resolution is the IDFS routine that determines the maximum temporal
resolution associated with the data set of interest, which is referenced through the key value
data_key which can be created using the get_data_key module. The calculated resolution
may be modified by specifying the number of sweeps/spins which are to be processed. If
the parameter num_sweeps is set to indicate that the resolution should be calculated in
terms of spins, a check is made to determine if the data set requested returns a spin rate. If

calc_time_resolution (1R) calc_time_resolution (1R)

 68 December 28, 2012

the data set does not return a spin rate, the resolution is calculated in terms of sweeps, not
spins. Before this routine can be utilized, a call to the routine file_open must be made.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

The parameter idf_data_ptr is a pointer to the structure that is to hold all data pertinent to
the data set being processed. The structure is created and the address to this structure is
returned when a call to the create_idf_data_structure routine is made. The user also has
the option of calling the module create_data_structure, which determines what type of
data structure is needed for the IDFS data set of interest. In most cases, one data structure is
sufficient to process any number of distinct data sets. However, if more than one structure
is needed, the user may call the create_idf_data_structure routine N times to create N
instances of the idf_data structure. The user must keep track of which pointer to send to
the IDFS routines that utilize this structure.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

ERRORS

All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

.
SEE ALSO

file_open 1R
get_data_key 1R
get_version_number 1R
create_data_structure 1R

calc_time_resolution (1R) calc_time_resolution (1R)

 69 December 28, 2012

create_idf_data_structure 1R
ret_codes 1H
libbase_idfs 1H

BUGS
None

EXAMPLES

Determine the temporal resolution for four sweeps of data from the virtual instrument
RTLA, which is part of the RETE instrument/experiment, which is part of the TSS-1
mission, which is identified with the TSS project.

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_LONG res_sec, res_nsec;
SDDAS_SHORT status;
void *idf_data_ptr;

status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

status = create_idf_data_structure (&idf_data_ptr);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by create_idf_data_structure routine.\n", status);
 exit (-1);
 }

status = calc_time_resolution (data_key, "", vnum, idf_data_ptr, 4,
 &res_sec, &res_nsec);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by calc_time_resolution routine.\n", status);
 exit (-1);
 }

calc_time_resolution (1R) calc_time_resolution (1R)

 70 December 28, 2012

convert_to_units (1R) convert_to_units (1R)

 71 December 28, 2012

CONVERT_TO_UNITS
function - converts raw data into units by applying the tables and operations specified

SYNOPSIS

#include "libbase_idfs.h"
#include "ret_codes.h"
#include "user_defs.h"

SDDAS_SHORT convert_to_units (SDDAS_ULONG data_key, SDDAS_CHAR *exten,

 SDDAS_USHORT version, void *idf_data_ptr,
 SDDAS_SHORT sensor, SDDAS_CHAR data_type,
 SDDAS_CHAR cal_set, SDDAS_CHAR num_tbls,
 SDDAS_CHAR *tbls_to_apply, SDDAS_LONG *tbl_oper,
 SDDAS_FLOAT *ret_data, SDDAS_CHAR chk_fill,
 SDDAS_LONG fill_value)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file names when

default files are not to be used, otherwise a null string
version - IDFS data set identification number which allows for multiple

openings of the same data set
idf_data_ptr - pointer to the idf_data structure that is to hold sensor data and

pertinent ancillary data for the data set of interest
sensor - the sensor identification number if processing sensor, sweep step,

calibration, data quality, pitch angle, azimuthal angle, or spacecraft
potential data; otherwise, the instrument status (mode) value of
interest

data_type - the type of data being requested
1 - sensor data (SENSOR)
2 - sweep step data (SWEEP_STEP)
3 - calibration data (CAL_DATA)
4 - instrument status or mode data (MODE)
5 - data quality data (D_QUAL)

 6 - pitch angle data (PITCH_ANGLE)
7 - start azimuthal angle data (START_AZ_ANGLE)
8 - stop azimuthal angle data (STOP_AZ_ANGLE)
9 – spacecraft potential data (SC_POTENTIAL)
10 – background data (BACKGROUND)

cal_set - the calibration set from which requested calibration data
(CAL_DATA) is to be retrieved

- If calibration data is not being requested, this parameter is
not utilized and it is suggested that the user pass a value of
zero for this parameter.

num_tbls - the number of elements specified in the tbls_to_apply and
 tbl_oper parameters

convert_to_units (1R) convert_to_units (1R)

 72 December 28, 2012

 tbls_to_apply - the tables that are to be applied in order to derive the desired units
 tbl_oper - the operations that are to be applied to the specified tables in order

to derive the desired units
 ret_data - user-defined array which holds the data in the unit requested
 chk_fill - flag indicating if the data is to be checked for fill values. If a fill

value is found within the data and if the chk_fill flag is set to 1, the
data value will be returned as -3.4e38 (OUTSIDE_MIN) in the
ret_data array in order to flag the data as a fill value. If the chk_fill
flag is set to 0, all data is treated as valid data and is returned as
such in the ret_data array. Fill data is only applicable to SENSOR
and CAL_DATA data types.

0 - do not check for fill values
1 - check for fill values

 fill_value - the fill data value, as specified within the raw telemetry
 convert_to_units - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for CONVERT_TO_UNITS

STATUS CODE EXPLANATION OF STATUS
CNVT_NOT_FOUND the requested data_key, exten, version combination has no memory allocated

for processing (user did not call file_open for this combination)
CNVT_BAD_DTYPE invalid data type value
CNVT_BAD_TBL_OPER the look-up operation is not defined for the combination of the primary and

intermediate accumulators
CNVT_BAD_TBL_NUM invalid table number
CNVT_NO_TMP there is no data in the intermediate accumulator to combine with the primary

accumulator
CNVT_TMP_MALLOC no memory for the intermediate accumulator
CONV_CAL_MALLOC no memory for temporary array that holds the calibration data before it is

expanded to vector length
CONV_CAL_VECTOR_MISMATCH one of the tables specified is a function of data that is not dimensioned the

same size as the requested calibration set
CONV_MODE_BAD_MODE invalid instrument status (mode) value
CONV_MODE_BAD_TBL_NUM the table specified is not a mode-dependent table for the mode in question
CONV_MODE_MISMATCH only tables that apply to mode data are valid
CNVT_NO_ADV a table operator references an advanced data buffer(s) which does not contain

any data to use in order to perform the specified operation
CNVT_BAD_BUF_NUM a table operator specifies a combination function to be performed on

advanced data buffers and specifies a 2 for the FROM or TO buffer value. A
value of 2 is reserved and cannot be used.

CNVT_SAME_BUF_NUM a table operator specifies a combination function to be performed on
advanced data buffers and specifies the same value for the FROM and TO
buffer values – the two data buffers values must be different

WRONG_DATA_STRUCTURE incompatibility between IDFS data set and IDFS data structure used to hold
the data being returned

ALL_OKAY routine terminated successfully

convert_to_units (1R) convert_to_units (1R)

 73 December 28, 2012

DESCRIPTION
Convert_to_units is the IDFS data conversion routine. This routine will convert sensor
data, sweep step data, calibration data, instrument status (mode) information, data quality
data, pitch angle data, azimuthal angle data, spacecraft potential data and background data
to different formats (units) by applying the tables and the table operations in the specified
order. It is imperative that a call to the read_drec routine be made PRIOR to calling this
routine in order to fill the idf_data structure. With the exception of mode data, all data
types are associated with a specific sensor, which is indicated through the sensor number
(sensor). The sensor is further identified as being associated with a specific data set. The
data set of interest is referenced through the key value data_key which can be created using
the get_data_key module.

There are two data types defined for azimuthal angle data, START_AZ_ANGLE and
STOP_AZ_ANGLE. The start azimuthal angle values are always returned as values
between 0 and 360 degrees. However, the stop azimuthal angle values could be negative (if
the instrument is spinning in a negative direction) or could be greater than 360 degrees. The
stop azimuthal angle values are computed by adding the degrees covered by the
accumulation time of each sample to the start azimuthal angle values.

The instrument status (mode) data comes from the header record and is defined for the
virtual instrument in question; therefore, the instrument status data is not associated with
any particular sensor. When mode data is being requested, the user should set the sensor
parameter to specify the status value of interest, with the numbering starting at zero.

The units that the data is to be returned in is specified by the user through the parameters
num_tbls, tbls_to_apply and tbl_oper. If the user wants raw units, that is, the telemetry
data, to be returned, the user should set the num_tbls parameter to zero and put a
placeholder variable for the tbls_to_apply and tbl_oper parameters. The raw units for
pitch angle and azimuthal angle data is defined as degrees. For other units pertinent to the
data set requested, the user must specify the tables and the table operations that are to be
applied to calculate the desired unit. The order is implied by the contents of the
tbls_to_apply array.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

The parameter idf_data_ptr is a pointer to the structure that is to hold all data pertinent to
the data set being processed. The structure is created and the address to this structure is

convert_to_units (1R) convert_to_units (1R)

 74 December 28, 2012

returned when a call to the create_idf_data_structure routine is made. The user also has
the option of calling the module create_data_structure, which determines what type of
data structure is needed for the IDFS data set of interest. In most cases, one data structure is
sufficient to process any number of distinct data sets. However, if more than one structure
is needed, the user may call the create_idf_data_structure routine N times to create N
instances of the idf_data structure. The user must keep track of which pointer to send to
the IDFS routines that utilize this structure.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

The user will need to pass in an array ret_data that will be used to return the data in the unit
requested. The user has 2 choices as to how to handle the allocation of space for this array.
The user can either declare an array of a large size, say 1000, which is of the type
SDDAS_FLOAT (e.g., SDDAS_FLOAT hold_values[1000]), or the user can use a
memory allocation routine to allocate the precise number of bytes needed to hold this
information. The number of bytes needed is dependent upon the type of data being
requested. The following table illustrates the number of bytes needed for the various data
types. The names appearing in bold text represent elements from the idf_data structure.

DATA TYPE NUMBER OF BYTES

SENSOR sizeof (SDDAS_FLOAT) * num_sample
SWEEP_STEP sizeof (SDDAS_FLOAT) * num_swp_steps
CAL_DATA sizeof (SDDAS_FLOAT) * num_sample
MODE sizeof (SDDAS_FLOAT) * 1
D_QUAL sizeof (SDDAS_FLOAT) * 1
PITCH_ANGLE sizeof (SDDAS_FLOAT) * num_pitch or

sizeof (SDDAS_FLOAT) * num_sample
START_AZ_ANGLE sizeof (SDDAS_FLOAT) * num_angle
STOP_AZ_ANGLE sizeof (SDDAS_FLOAT) * num_angle
SC_POTENTIAL sizeof (SDDAS_FLOAT) * num_potential
BACKGROUND sizeof (SDDAS_FLOAT) * num_background

If pitch angle data is being requested, a check must be made to see if pitch angle data was
calculated. If num_pitch is equal to zero, no pitch angles were computed. In this case, the
user must allocate sizeof (SDDAS_FLOAT) * num_sample bytes since this module will
return num_sample values, all set to -3.4e38 (OUTSIDE_MIN). The same check must be
made for spacecraft potential and background data. If num_potential is equal to zero, no
spacecraft potential values were returned. In this case, the user must allocate sizeof

convert_to_units (1R) convert_to_units (1R)

 75 December 28, 2012

(SDDAS_FLOAT) * num_sample bytes since this module will return num_sample values,
all set to -3.4e38 (OUTSIDE_MIN). If num_background is equal to zero, no background
values were returned. In this case, the user must allocate sizeof (SDDAS_FLOAT) *
num_sample bytes since this module will return num_sample values, all set to -3.4e38
(OUTSIDE_MIN). If the user is dynamically allocating the space for the data, it is
imperative that the user check these length indicators to ensure that enough space is
allocated to hold the data. For example, if the previous call to the read_drec routine set
num_sample to 12, the user would have allocated 12 * sizeof (SDDAS_FLOAT) bytes.
However, if the next call to the read_drec routine sets num_sample to 18, the user needs to
reallocate the memory to 18 * sizeof (SDDAS_FLOAT) bytes. If the user does not
reallocate the memory for the data, the convert_to_units routine will attempt to write into
memory beyond the data array, which could result in abnormal program termination. It is
advised that the user reallocate space only if the number of data elements increases since the
memory allocation subroutines can become time and resource consuming if called after
every read_drec call.

ERRORS

All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

file_open 1R
read_drec 1R
get_data_key 1R
get_version_number 1R
create_data_structure 1R
create_idf_data_structure 1R
ret_codes 1H
user_defs 1H
libbase_idfs 1H
idf_data 1S

BUGS

None

EXAMPLES

Convert one sweep of data from sensor 2 in the virtual instrument RTLA, which is part of
the RETE instrument/experiment, which is part of the TSS-1 mission, which is identified
with the TSS project. Return the sensor data in raw units and do not check for fill data
values. Assumption is that no more than 1000 values are returned.

#include "libbase_idfs.h"
#include "ret_codes.h"

convert_to_units (1R) convert_to_units (1R)

 76 December 28, 2012

#include "user_defs.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_FLOAT hold_values[1000];
SDDAS_LONG *tbl_oper;

 SDDAS_SHORT status;
SDDAS_CHAR num_tbls, *tbls_to_apply;
void *idf_data_ptr;
num_tbls = 0;
tbls_to_apply = NULL;
tbl_oper = NULL;
status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);

if (status != ALL_OKAY)
 {

 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }

get_version_number (&vnum);

status = create_idf_data_structure (&idf_data_ptr);
if (status != ALL_OKAY)

 {
 printf ("\n Error %d returned by create_idf_data_structure routine.\n", status);
 exit (-1);
 }

status = read_drec (data_key, "", vnum, idf_data_ptr, 2, 1, 1);
if (status != ALL_OKAY)
 {

 printf ("\n Error %d returned by read_drec routine.\n", status);
 exit (-1);
 }

 status = convert_to_units (data_key, "", vnum, idf_data_ptr, 2, SENSOR, 0, num_tbls,
 tbls_to_apply, tbl_oper, hold_values, 0, 0);
 if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by convert_to_units routine.\n", status);
 exit (-1);
 }

Convert sensor data, sweep step data, calibration data, data quality data, pitch angle data,
azimuthal angle data, spacecraft potential data and background data for sensor 2 in addition
to mode data for instrument status value 0 in the virtual instrument RTLA, which is part of

convert_to_units (1R) convert_to_units (1R)

 77 December 28, 2012

the RETE instrument/experiment, which is part of the TSS-1 mission, which is identified
with the TSS project. Allocate the data arrays so that no memory waste is encountered.

 #include "libbase_idfs.h"
 #include "user_defs.h"
 #include "ret_codes.h"

 struct idf_data *EXP_DATA;
 SDDAS_ULONG data_key;
 SDDAS_USHORT vnum;
 SDDAS_FLOAT *data_values, *swp_values, *cal_values, *mode_values, dqual_value;
 SDDAS_FLOAT *pitch_values, *start_az_values, *stop_az_value, *potential_values;
 SDDAS_FLOAT *background;
 SDDAS_LONG offset, *tbl_oper;
 SDDAS_SHORT status;
 SDDAS_CHAR cset, *tbls_to_apply, num_tbls;
 size_t bytes;
 void *base_sen, *base_swp, *base_cal, *base_mode, *base_az, *base_pitch;

void *base_potential, *base_background, *idf_data_ptr;

 num_tbls = 0;
 tbls_to_apply = NULL;
 tbl_oper = NULL;
 status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
 if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
 get_version_number (&vnum);

 status = create_idf_data_structure (&idf_data_ptr);
 if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by create_idf_data_structure routine.\n", status);
 exit (-1);
 }
 EXP_DATA = (struct idf_data *) idf_data_ptr;

 status = read_drec (data_key, "", vnum, idf_data_ptr, 2, 1, 1);
 if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by read_drec routine.\n", status);
 exit (-1);
 }

convert_to_units (1R) convert_to_units (1R)

 78 December 28, 2012

 bytes = sizeof (SDDAS_FLOAT) * EXP_DATA->num_sample;
 if ((base_sen = malloc (bytes)) == NULL)
 {
 printf ("\n No memory for array that holds converted sensor data.");

 return (-1);
 }

 /* Return data values in raw units and check for fill values of 255 (raw telemetry value). */

 data_values = (SDDAS_FLOAT *) base_sen;
 status = convert_to_units (data_key, "", vnum, idf_data_ptr, 2, SENSOR, 0, num_tbls,
 tbls_to_apply, tbl_oper, data_values, 1, 255);
 if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by convert_to_units routine.\n", status);
 exit (-1);
 }

 bytes = sizeof (SDDAS_FLOAT) * EXP_DATA->num_swp_steps;
 if ((base_swp = malloc (bytes)) == NULL)
 {
 printf ("\n No memory for array that holds converted sweep data.");

 return (-1);
 }

/* Return raw step values. */

swp_values = (SDDAS_FLOAT *) base_swp;
status = convert_to_units (data_key, "", vnum, idf_data_ptr, 2, SWEEP_STEP, 0,

 num_tbls, tbls_to_apply, tbl_oper, swp_values, 0, 0);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by convert_to_units routine.\n", status);
 exit (-1);
 }

bytes = sizeof (SDDAS_FLOAT) * EXP_DATA->num_sample;
if ((base_cal = malloc (bytes)) == NULL)
 {
 printf ("\n No memory for array that holds converted cal. data.");
 return (-1);
 }

convert_to_units (1R) convert_to_units (1R)

 79 December 28, 2012

/* Return raw calibration values. */

cal_values = (SDDAS_FLOAT *) base_cal;
cset = 1;
status = convert_to_units (data_key, "", vnum, idf_data_ptr, 2, CAL_DATA, cset,
 num_tbls, tbls_to_apply, tbl_oper, cal_values, 0, 0);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by convert_to_units routine.\n", status);
 exit (-1);
 }

bytes = sizeof (SDDAS_FLOAT) * 1;
if ((base_mode = malloc (bytes)) == NULL)
 {
 printf ("\n No memory for array that holds converted mode data.");
 return (-1);
 }

/* Return raw mode values. Notice that for the sensor parameter, */
/* we are passing in a zero, which is the mode of interest. */

mode_values = (SDDAS_FLOAT *) base_mode;
status = convert_to_units (data_key, "", vnum, idf_data_ptr, 0, MODE, 0, num_tbls,
 tbls_to_apply, tbl_oper, mode_values, 0, 0);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by convert_to_units routine.\n", status);
 exit (-1);
 }

/* Return data quality values. */

status = convert_to_units (data_key, "", vnum, idf_data_ptr, 2, D_QUAL, 0,
 num_tbls, tbls_to_apply, tbl_oper, &dqual_value, 0, 0);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by convert_to_units routine.\n", status);
 exit (-1);
 }

if (EXP_DATA->num_pitch == 0)
 bytes = sizeof (SDDAS_FLOAT) * EXP_DATA->num_sample;
else
 bytes = sizeof (SDDAS_FLOAT) * EXP_DATA->num_pitch;

convert_to_units (1R) convert_to_units (1R)

 80 December 28, 2012

if ((base_pitch = malloc (bytes)) == NULL)
 {
 printf ("\n No memory for array that holds pitch angle data.");
 return (-1);
 }

/* Return pitch angle data values in raw units (by default, degrees). */

pitch_values = (SDDAS_FLOAT *) base_pitch;
status = convert_to_units (data_key, "", vnum, idf_data_ptr, 2, PITCH_ANGLE, 0,
 num_tbls, tbls_to_apply, tbl_oper, pitch_values, 0, 0);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by convert_to_units routine.\n", status);
 exit (-1);
 }

bytes = 2 * sizeof (SDDAS_FLOAT) * EXP_DATA->num_angle;
if ((base_az = malloc (bytes)) == NULL)
 {
 printf ("\n No memory for array that holds azimuthal angle data.");
 return (-1);
 }

/* Return azimuthal angle data values in raw units (by default, degrees). */
/* Cast base_az in setting of stop_az_values since it is a void pointer. */

start_az_values = (SDDAS_FLOAT *) base_az;
offset = sizeof (SDDAS_FLOAT) * EXP_DATA->num_angle;
stop_az_values = (SDDAS_FLOAT *) ((SDDAS_CHAR *) base_az + offset);

status = convert_to_units (data_key, "", vnum, idf_data_ptr, 2, START_AZ_ANGLE,
 0, num_tbls, tbls_to_apply, tbl_oper, start_az_values, 0, 0);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by convert_to_units routine.\n", status);
 exit (-1);
 }

status = convert_to_units (data_key, "", vnum, idf_data_ptr, 2, STOP_AZ_ANGLE, 0,
 num_tbls, tbls_to_apply, tbl_oper, stop_az_values, 0, 0);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by convert_to_units routine.\n", status);
 exit (-1);

convert_to_units (1R) convert_to_units (1R)

 81 December 28, 2012

 }

if (EXP_DATA->num_potential == 0)
 bytes = sizeof (SDDAS_FLOAT) * EXP_DATA->num_sample;
else
 bytes = sizeof (SDDAS_FLOAT) * EXP_DATA->num_potential;
if ((base_potential = malloc (bytes)) == NULL)
 {
 printf ("\n No memory for array that holds spacecraft potential data.");
 return (-1);
 }

/* Return spacecraft potential data values in raw units. */

potential_values = (SDDAS_FLOAT *) base_potential;
status = convert_to_units (data_key, "", vnum, idf_data_ptr, 2, SC_POTENTIAL, 0,
 num_tbls, tbls_to_apply, tbl_oper, potential_values, 0, 0);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by convert_to_units routine.\n", status);
 exit (-1);
 }

if (EXP_DATA->num_background == 0)
 bytes = sizeof (SDDAS_FLOAT) * EXP_DATA->num_sample;
else
 bytes = sizeof (SDDAS_FLOAT) * EXP_DATA->num_background;
if ((base_background = malloc (bytes)) == NULL)
 {
 printf ("\n No memory for array that holds background data.");
 return (-1);
 }

/* Return background data values in raw units. */

background_values = (SDDAS_FLOAT *) base_background;
status = convert_to_units (data_key, "", vnum, idf_data_ptr, 2, BACKGROUND, 0,
 num_tbls, tbls_to_apply, tbl_oper, background_values, 0,
 0);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by convert_to_units routine.\n", status);
 exit (-1);
 }

convert_to_units (1R) convert_to_units (1R)

 82 December 28, 2012

create_data_structure (1R) create_data_structure (1R)

 83 December 28, 2012

CREATE_DATA_STRUCTURE
function - creates an instance of the structure that is needed to hold the data for the data set
specified

SYNOPSIS

#include "libbase_idfs.h"
#include "ret_codes.h"

 SDDAS_SHORT create_data_structure (SDDAS_ULONG data_key,
 SDDAS_CHAR *exten,
 SDDAS_USHORT version, void **data_ptr)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file names when

default files are not to be used, otherwise a null string
version - IDFS data set identification number which allows for multiple

openings of the same data set
data_ptr - pointer to the newly created data structure
create_data_structure - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for CREATE_DATA_STRUCTURE

STATUS CODE EXPLANATION OF STATUS

CREATE_DSTR_NOT_FOUND the requested data_key, exten, version combination has no memory
allocated for processing (user did not call file_open for this combination)

 error codes returned by create_idf_data_structure ()
 error codes returned by create_tensor_data_structure ()
ALL_OKAY the data structure was allocated

DESCRIPTION

Create_data_structure is the IDFS routine that creates the appropriate instance of the data
structure that is used by the IDFS software to return sensor data and pertinent ancillary data
for the data set of interest. The type of data structure allocated depends upon the IDFS data
source being processed – either conventional IDFS data with a dependency based upon a
scanning variable (refer to create_idf_data_structure) or multi-dimensional tensor IDFS
data (refer to create_tensor_data_structure). With each call to this module, a new data
structure is created and the address of this structure is returned. In order to access the
elements within the data structure, the user must explicitly cast the returned void pointer to
a pointer of the correct type.

In most cases, one data structure is sufficient to process any number of distinct data sets.
However, if more than one structure is needed, the user may call the create_data_structure
routine N times to create N instances of the data structure. The user must keep track of
which pointer to send to the IDFS routines that utilize this structure. The contents of this
structure is described in section 1S of the IDFS Programmers Manual.

create_data_structure (1R) create_data_structure (1R)

 84 December 28, 2012

The address of each data structure that is created is kept and this memory is freed when the
free_experiment_info routine is called. The user must not free the memory themselves
since the IDFS software will attempt to free the memory location and the result is uncertain.

ERRORS

All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO
free_experiment_info 1R
create_idf_data_structure 1R
create_tensor_data_structure 1R
ret_codes 1H
libbase_idfs 1H
idf_data 1S
tensor_data 1S

BUGS

None

EXAMPLES

Create one instance of the data structure that is needed for the data set specified and return
the address in the specified parameter. Assume that the data_key and version number have
already been set by the appropriate routines.

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_SHORT status;
void *data_ptr;

.
.
.
status = create_data_structure (data_key, "", vnum, &data_ptr);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by create_data_structure routine.\n", status);
 exit (-1);
 }

create_idf_data_structure (1R) create_idf_data_structure (1R)

 85 December 28, 2012

CREATE_IDF_DATA_STRUCTURE
function - creates an instance of the idf_data structure

SYNOPSIS

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT create_idf_data_structure (void **idf_data_ptr)

ARGUMENTS

idf_data_ptr - pointer to the newly created idf_data structure
create_idf_data_structure - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for CREATE_IDF_DATA_STRUCTURE

STATUS CODE EXPLANATION OF STATUS

CREATE_DATA_ALL_MALLOC no memory to hold the address of all allocated idf_data structures
CREATE_DATA_ALL_REALLOC no memory for expansion of the area that holds the address of all allocated

idf_data structures
CREATE_DATA_MALLOC no memory for the idf_data structure
ALL_OKAY the idf_data structure was allocated

DESCRIPTION

Create_idf_data_structure is the IDFS routine that creates an instance of the idf_data
structure that is used by the IDFS software to return sensor data and pertinent ancillary data
for the data set of interest. With each call to this module, a new idf_data structure is
created and the address of this structure is returned. In order to access the elements within
the idf_data structure, the user must explicitly cast the returned void pointer to a pointer of
the type struct idf_data.

In most cases, one data structure is sufficient to process any number of distinct data sets.
However, if more than one structure is needed, the user may call the
create_idf_data_structure routine N times to create N instances of the idf_data structure.
The user must keep track of which pointer to send to the IDFS routines that utilize this
structure. The contents of this structure is described in section 1S of the IDFS Programmers
Manual.

The address of each idf_data structure that is created is kept and this memory is freed when
the free_experiment_info routine is called. The user must not free the memory
themselves since the IDFS software will attempt to free the memory location and the result
is uncertain.

create_idf_data_structure (1R) create_idf_data_structure (1R)

 86 December 28, 2012

ERRORS
All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO
free_experiment_info 1R
ret_codes 1H
libbase_idfs 1H
idf_data 1S

BUGS

None

EXAMPLES

Create one instance of the idf_data structure and return the address in the specified
parameter. Cast the returned void pointer so that elements of the idf_data structure can be
referenced.

#include "libbase_idfs.h"
#include "ret_codes.h"

struct idf_data *EXP_DATA;
SDDAS_SHORT status;
void *idf_data_ptr;

status = create_idf_data_structure (&idf_data_ptr);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by create_idf_data_structure routine.\n", status);
 exit (-1);
 }
EXP_DATA = (struct idf_data *) idf_data_ptr;

/* Print the start time. */

printf ("\n START TIME_MS = %d", EXP_DATA->bmilli);

create_tensor_data_structure (1R) create_tensor_data_structure (1R)

 87 December 28, 2012

CREATE_TENSOR_DATA_STRUCTURE
function - creates an instance of the tensor_data structure

SYNOPSIS

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT create_tensor_data_structure (void **tensor_data_ptr)

ARGUMENTS

tensor_data_ptr - pointer to the newly created tensor_data structure
create_tensor_data_structure - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for CREATE_TENSOR_DATA_STRUCTURE

STATUS CODE EXPLANATION OF STATUS

CREATE_TENSOR_DATA_ALL_MALLOC no memory to hold the address of all allocated tensor_data
structures

CREATE_TENSOR_DATA_ALL_REALLOC no memory for expansion of the area that holds the address of all
allocated tensor_data structures

CREATE_TENSOR_DATA_MALLOC no memory for the tensor_data structure
ALL_OKAY the tensor_data structure was allocated

DESCRIPTION

Create_tensor_data_structure is the IDFS routine that creates an instance of the
tensor_data structure that is used by the IDFS software to return sensor data and pertinent
ancillary data for the multi-dimensional IDFS data set of interest. With each call to this
module, a new tensor_data structure is created and the address of this structure is returned.
In order to access the elements within the tensor_data structure, the user must explicitly
cast the returned void pointer to a pointer of the type struct tensor_data.

In most cases, one data structure is sufficient to process any number of distinct multi-
dimensional IDFS data sets. However, if more than one structure is needed, the user may
call the create_tensor_data_structure routine N times to create N instances of the
tensor_data structure. The user must keep track of which pointer to send to the IDFS
routines that utilize this structure. The contents of this structure is described in section 1S
of the IDFS Programmers Manual.

The address of each tensor_data structure that is created is kept and this memory is freed
when the free_experiment_info routine is called. The user must not free the memory
themselves since the IDFS software will attempt to free the memory location and the result
is uncertain.

create_tensor_data_structure (1R) create_tensor_data_structure (1R)

 88 December 28, 2012

ERRORS
All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO
free_experiment_info 1R
ret_codes 1H
libbase_idfs 1H
tensor_data 1S

BUGS

None

EXAMPLES

Create one instance of the tensor_data structure and return the address in the specified
parameter. Cast the returned void pointer so that elements of the tensor_data structure can
be referenced.

#include "libbase_idfs.h"
#include "ret_codes.h"

struct tensor_data *TENSOR_DATA;
SDDAS_SHORT status;
void *tensor_data_ptr;

status = create_tensor_data_structure (&tensor_data_ptr);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by create_tensor_data_structure routine.\n", status);
 exit (-1);
 }
TENSOR_DATA = (struct tensor_data *) tensor_data_ptr;

/* Print the start time. */

printf ("\n START TIME_MS = %d", TENSOR_DATA->bmilli);

destroy_last_idf_data_structure (1R) destroy_last_idf_data_structure (1R)

 89 December 28, 2012

DESTROY_LAST_IDF_DATA_STRUCTURE
function – free the last instance of the idf_data structure allocated

SYNOPSIS

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT destroy_last_idf_data_structure ()

ARGUMENTS

destroy_last_idf_data_structure - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for DESTROY_LAST_IDF_DATA_STRUCTURE

STATUS CODE EXPLANATION OF STATUS
DESTROY_NO_IDF_DATA there are no idf_data structures to be freed
ALL_OKAY the last allocated idf_data structure was freed

DESCRIPTION

Destroy_last_idf_data_structure is the IDFS routine that destroys or frees the last instance
of the idf_data structure that was allocated by the create_idf_data_structure routine in
order to return sensor data and pertinent ancillary data for the data set of interest. An array
of pointers that holds the address of each idf_data structure that is created is kept and with
each call to this module, the last idf_data structure that was allocated is freed. If this
module is called more times than the number of allocated structures, an error code is
returned to alert the calling routine of this situation.

ERRORS

All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO
create_idf_data_structure 1R
ret_codes 1H
libbase_idfs 1H
idf_data 1S

BUGS

None

destroy_last_idf_data_structure (1R) destroy_last_idf_data_structure (1R)

 90 December 28, 2012

EXAMPLES
Destroy, or free, the last instance of the idf_data structure.

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT status;

.
.
.
status = destroy_last_idf_data_structure ();
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by destroy_last_idf_data_structure routine.\n", status);
 exit (-1);
 }

destroy_last_tensor_data_structure (1R) destroy_last_tensor_data_structure (1R)

 91 December 28, 2012

DESTROY_LAST_TENSOR_DATA_STRUCTURE
function – free the last instance of the tensor_data structure allocated

SYNOPSIS

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT destroy_last_tensor_data_structure ()

ARGUMENTS

destroy_last_tensor_data_structure - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for DESTROY_LAST_TENSOR_DATA_STRUCTURE

STATUS CODE EXPLANATION OF STATUS
DESTROY_NO_TENSOR_DATA there are no tensor_data structures to be freed
ALL_OKAY the last allocated tensor_data structure was freed

DESCRIPTION

Destroy_last_tensor_data_structure is the IDFS routine that destroys or frees the last
instance of the tensor_data structure that was allocated by the
create_tensor_data_structure routine in order to return sensor data and pertinent ancillary
data for the multi-dimensional IDFS data set of interest. An array of pointers that holds the
address of each tensor_data structure that is created is kept and with each call to this
module, the last tensor_data structure that was allocated is freed. If this module is called
more times than the number of allocated structures, an error code is returned to alert the
calling routine of this situation.

ERRORS

All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO
create_tensor_data_structure 1R
ret_codes 1H
libbase_idfs 1H
tensor_data 1S

BUGS

None

destroy_last_tensor_data_structure (1R) destroy_last_tensor_data_structure (1R)

 92 December 28, 2012

EXAMPLES
Destroy, or free, the last instance of the tensor_data structure.

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT status;

.
.
.
status = destroy_last_tensor_data_structure ();
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by destroy_last_tensor_data_structure routine.\n", status);
 exit (-1);
 }

extract_single_element_from_idfs_tensor (1R)

 93 December 28, 2012

EXTRACT_SINGLE_ELEMENT_FROM_IDFS_TENSOR
function – extracts a single element from the specified IDFS tensor

SYNOPSIS

#include "libbase_idfs.h"
#include "ret_codes.h"

void extract_single_element_from_idfs_tensor (SDDAS_SHORT tensor_rank,
 SDDAS_ULONG *tensor_next_dimen, void *tensorA,
 SDDAS_ULONG *element_indices, void *ret_ptr,
 SDDAS_CHAR long_dtype)

ARGUMENTS
tensor_rank - the rank of the tensor being processed
tensor_next_dimen - pointer to an array of size tensor_rank that holds the number

of data values to bypass in order to get to the next index for a
given dimension ([0] = first dimension or slowest varying
dimension)

 tensorA - pointer to the input tensor data
 element_indices - pointer to an array of size tensor_rank that holds the indices

for each of the dimensions defined so that a single element of
the tensor can be indexed

 ret_ptr - pointer to the resultant
 long_dtype - flag indicating whether the input / return values are integer or

floating point
 0 - values are floating point values
 1 - values are integer values

DESCRIPTION

Extract_single_element_from_idfs_tensor is the IDFS routine that is used to extract a
single element from the multi-dimensional IDFS data that is returned by the
read_tensor_data module. The first two arguments, tensor_rank and tensor_next_dimen
can be taken directly from the tensor_data structure that is returned by the
read_tensor_data module. The argument element_indices is used to specify the start
index location at which the extraction is to take place for each defined dimension for the
multi-dimensional data held by the tensorA argument.

For the time being, multi-dimensional IDFS data can not be dynamically converted to any
other physical unit; therefore, the data must be stored in the physical unit desired when the
data set is created. However, the read_tensor_data module will return two sets of data
within the tensor_data structure. One set represents the raw integer values that are stored
within the data record and one set represents the floating point values that result when
transferring the raw integer values into the data type defined by d_type in the VIDF file for
the IDFS data set being processed. The two arguments, tensorA and long_dtype, should be
coupled so that the user can extract data from either of these two data sets correctly.

extract_single_element_from_idfs_tensor (1R)

 94 December 28, 2012

ERRORS
 This routine returns no status or error codes.

SEE ALSO

create_data_structure 1R
create_tensor_data_structure 1R
read_tensor_data 1R
libbase_idfs 1H
tensor_data 1S

BUGS

None

EXAMPLES

Extract the data, one element at a time, from the multi-dimensional data returned by the
read_tensor_data module. It is already known that the data stored in the multi-
dimensional IDFS data set is a 2-D tensor.

#include "libbase_idfs.h"
#include "ret_codes.h"
#include "user_defs.h"

struct tensor_data *TENSOR_DATA;
register SDDAS_USHORT i, j;
SDDAS_FLOAT conv_data;
SDDAS_ULONG data_key;
SDDAS_USHORT version;
SDDAS_ULONG element_indices[IDFS_MAX_DIMEN];
SDDAS_LONG data_val;
SDDAS_SHORT status, sensor = 0;
SDDAS_CHAR extension[3];
void *tensor_data_ptr, *param;

status = get_data_key ("MARS", "Mars_Express", "ASPERA-3", NPD", "NPD1BM16",
 &data_key);

 if (status != ALL_OKAY)
 {
 printf ("\n Error %d from get_data_key routine.\n", status);
 exit (-1);
 }
 get_version_number (&version);
 strcpy (extension,"");

extract_single_element_from_idfs_tensor (1R)

 95 December 28, 2012

status = create_tensor_data_structure (&tensor_data_ptr);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by create_tensor_data_structure routine.\n", status);
 exit (-1);
 }
.
.
.

 TENSOR_DATA = (struct tensor_data *) tensor_data_ptr;
 status = read_tensor_data (data_key, extension, version, tensor_data_ptr, sensor, 1);
 if (status < 0)
 {
 printf ("\nError %d from read_tensor_data.\n", status);
 exit (-1);
 }

 if (status == ALL_OKAY || TENSOR_DATA->filled_data)
 {
 /***/
 /* Print the raw integer data values, 6 values per row, in exponential format. */
 /***/

 for (i = 0; i < TENSOR_DATA->tensor_sizes[0]; ++i)
 {
 for (j = 0; j < TENSOR_DATA->tensor_sizes[1]; ++j)
 {
 element_indices[0] = i;
 element_indices[1] = j;
 param = &data_val;

 extract_single_element_from_idfs_tensor (TENSOR_DATA->tensor_rank,

 TENSOR_DATA->tnext_dimen,
 (void *) TENSOR_DATA->sen_data,
 &element_indices[0], param, 1);
 if (j == 0)
 printf ("\n");
 printf ("%ld ", data_val);
 }
 }

extract_single_element_from_idfs_tensor (1R)

 96 December 28, 2012

 /***/
 /* Print the floating point data values, 6 values per row, in exponential format. */
 /***/

 for (i = 0; i < TENSOR_DATA->tensor_sizes[0]; ++i)
 {
 for (j = 0; j < TENSOR_DATA->tensor_sizes[1]; ++j)
 {
 element_indices[0] = i;
 element_indices[1] = j;
 param = &conv_data;
 extract_single_element_from_idfs_tensor (TENSOR_DATA->tensor_rank,
 TENSOR_DATA->tnext_dimen,
 (void *) TENSOR_DATA->tdata,
 &element_indices[0], param, 0);
 if (j == 0)
 printf ("\n");
 printf ("%.4f ", conv_data);
 }
 }
 }

fields_to_key (1R) fields_to_key (1R)

 97 December 28, 2012

FIELDS_TO_KEY
function - create a key value which identifies the data set of interest

SYNOPSIS

#include "libbase_idfs.h"
#include "libCfg.h"

void fields_to_key (SDDAS_SHORT *params, SDDAS_ULONG *data_key)

ARGUMENTS

params - an array which holds the assigned database numbers for the project,
mission, experiment, instrument and virtual instrument to be accessed

data_key - unique value which indicates the data set being requested

DESCRIPTION

Fields_to_key is the IDFS routine which creates a key that reflects the data set being
accessed by utilizing the assigned database numbers for the project, mission, experiment,
instrument and virtual instrument of interest. The IDFS routine get_data_key performs the
same function but works with the assigned database names instead of the assigned database
numbers. Most of the IDFS routines utilize key values; therefore, a call to either this routine
or to the get_data_key routine must be made before any of the other IDFS routines that
utilize a key value can be called.

The user selects the data set of interest by specifying a virtual instrument from a specific
instrument, which comes from a parent experiment within a mission which is associated
with a specific project. All references for these items are through assigned database
numbers. The params parameter is an array that holds these assigned database numbers in
the order specified below:

 element 0 project identification number
 element 1 mission identification number
 element 2 experiment identification number
 element 3 instrument identification number
 element 4 virtual instrument identification number

ERRORS

This routine returns no status or error codes.

SEE ALSO
 get_data_key 1R

BUGS

None

fields_to_key (1R) fields_to_key (1R)

 98 December 28, 2012

EXAMPLES
Retrieve the data key for the virtual instrument RTLA, which is part of the RETE
instrument/experiment, which is part of the TSS-1 mission, which is identified with the TSS
project.

#include "libbase_idfs.h"
#include "libCfg.h"

extern LinkList Projects;

StrHier Scode;
SDDAS_ULONG data_key;
SDDAS_SHORT project, mission, exper, inst, vinst, params[5];

Scode = SourceByStr (Projects, "TSS", (SDDAS_CHAR *) 0);
if (Scode == NULL)
 {
 printf ("\n Error in calling SourceByStr for project number.\n");
 exit (-1);
 }
else
 project = SNUM (Scode);

Scode = SourceByStr (Projects, "TSS", "TSS-1", (SDDAS_CHAR *) 0);
if (Scode == NULL)
 {
 printf ("\n Error in calling SourceByStr for mission number.\n");
 exit (-1);
 }
else
 mission = SNUM (Scode);

Scode = SourceByStr (Projects, "TSS", "TSS-1", "RETE", (SDDAS_CHAR *) 0);
if (Scode == NULL)
 {
 printf ("\n Error in calling SourceByStr for experiment number.\n");
 exit (-1);
 }
else
 exper = SNUM (Scode);

Scode = SourceByStr (Projects, "TSS", "TSS-1", "RETE", "RETE", (SDDAS_CHAR *) 0);
if (Scode == NULL)
 {
 printf ("\n Error in calling SourceByStr for instrument number.\n");

fields_to_key (1R) fields_to_key (1R)

 99 December 28, 2012

 exit (-1);
 }
else
 inst = SNUM (Scode);

Scode = SourceByStr (Projects, "TSS", "TSS-1", "RETE", "RETE", "RTLA",

(SDDAS_CHAR *) 0);
if (Scode == NULL)
 {
 printf ("\n Error in calling SourceByStr for virtual inst. number.\n");
 exit (-1);
 }
else
 vinst = SNUM (Scode);

params[0] = project;
params[1] = mission;
params[2] = exper;
params[3] = inst;
params[4] = vinst;
fields_to_key (params, &data_key);

In the coding example provided, the database assignment numbers for the project, mission,
experiment, instrument and virtual instrument are retrieved through calls to the modules
SourceByStr and SNUM. A detailed description of these modules can be found in the
IDFS Configuration Definition Document.

fields_to_key (1R) fields_to_key (1R)

 100 December 28, 2012

file_open (1R) file_open (1R)

 101 December 28, 2012

FILE_OPEN
function - open IDFS files (data, header and VIDF) for the time period requested

SYNOPSIS

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT file_open (SDDAS_ULONG data_key, SDDAS_CHAR *exten,
 SDDAS_USHORT version, SDDAS_SHORT btime_yr,
 SDDAS_SHORT btime_day, SDDAS_LONG btime_sec,
 SDDAS_LONG btime_nano, SDDAS_SHORT etime_yr,
 SDDAS_SHORT etime_day, SDDAS_LONG etime_sec,
 SDDAS_LONG etime_nano, SDDAS_CHAR mode_data)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file names when

default files are not to be used, otherwise a null string
version - IDFS data set identification number which allows for multiple

openings of the same data set
btime_yr - beginning year for data being requested
btime_day - beginning day of year for data being requested
btime_sec - beginning time of day in seconds for data being requested
btime_nano - beginning time of day residual in nanoseconds
etime_yr - ending year for data being requested
etime_day - ending day of year for data being requested
etime_sec - ending time of day in seconds for data being requested
etime_nano - ending time of day residual in nanoseconds
mode_data - flag indicating if instrument status (mode) data will be requested

for this data set
 0 - instrument status data will not be requested for this data set
 1 - instrument status data will be requested for this data set

file_open - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for FILE_OPEN

STATUS CODE EXPLANATION OF STATUS
NO_DATA there is no data available for the requested time period (playback scenario)
OPEN_PTR_MALLOC no memory for IDFS location pointers
OPEN_EX_REALLOC no memory for experiment definition structure expansion
ALL_FLAG_MALLOC no memory for sensor flags
RTIME_NO HEADER header file could not be opened (real-time scenario)
RTIME_NO_DATA data file could not be opened (real-time scenario)
PBACK_NO_HEADER header file could not be opened (playback scenario)
PBACK_NO_DATA data file could not be opened (playback scenario)
ONCE_IDF_ELE_NOT_FOUND the data item being requested was not found in the VIDF file

file_open (1R) file_open (1R)

 102 December 28, 2012

STATUS CODE EXPLANATION OF STATUS
ONCE_IDF_MANY_BYTES the number of elements being requested is more than the number of

elements available for the selected field
ONCE_IDF_TBL_NUM the table being requested exceeds the number of defined tables
ONCE_IDF_CON_NUM the constant being requested exceeds the number of defined constants
ONCE_IDF_NO_ENTRY the field being requested is not defined
ONCE_BAD_HEADER_FMT invalid header record format value
ONCE_BAD_TENSOR_RANK invalid rank value for multi-dimensional IDFS data
ONCE_BAD_TENSOR_LENGTHS invalid dimension length value for multi-dimensional IDFS data
ONCE_CTARGET_MALLOC no memory for cal_target VIDF values
ONCE_CLEN_MALLOC no memory for cal_wlen VIDF values
ONCE_CSCOPE_MALLOC no memory for cal_scope VIDF values
CAL_DATA_MALLOC no memory for calibration information
ONCE_DATA_MALLOC no memory for data record information
ONCE_TBL_INFO_MALLOC no memory for structures which hold non-array table specific information
ONCE_D_TYPE_MALLOC no memory for d_type VIDF values
ONCE_TDW_LEN_MALLOC no memory for tdw_len VIDF values
ONCE_SPIN_OFF_MALLOC no memory for spin_time_off VIDF values
ONCE_SEN_STAT_MALLOC no memory for sen_status VIDF values
ONCE_CDTYPE_MALLOC no memory for cal_d_type VIDF values
ONCE_BAD_NUM_TBLS num_tbls can not be set to any value other than 0 for multi-dimensional

IDFS data
ONCE_BAD_CAL_TARGET cal_target can not be set to any value other than 0 for multi-dimensional

IDFS data
ONCE_BAD_MAX_NSS max_nss can not be set to any value other than 1 for multi-dimensional

IDFS data
ONCE_BAD_SMP_ID smp_id must be set to 3 for multi-dimensional IDFS data
ONCE_BAD_DA_METHOD da_method must be set to 0 for multi-dimensional IDFS data
ONCE_BAD_SWP_LEN swp_len must be set to 1 for multi-dimensional IDFS data
ONCE_BAD_SEN_MODE sen_mode must be set to either 3 or 7 for multi-dimensional IDFS data
NUM_CAL_REALLOC no memory for expansion of calibration array
UPDATE_IDF_ELE_NOT_FOUND the data item being requested was not found in the VIDF file
UPDATE_IDF_MANY_BYTES the number of elements being requested is more than the number of

elements available for the selected field
UPDATE_IDF_TBL_NUM the table being requested exceeds the number of defined tables
UPDATE_IDF_CON_NUM the constant being requested exceeds the number of defined constants
UPDATE_IDF_NO_ENTRY the field being requested is not defined
UPDATE_IDF_NO_FILL a fill value must be specified for multi-dimensional IDFS data
UPDATE_IDF_BAD_PA_DEF pitch angle can not be specified for multi-dimensional IDFS data
UPDATE_IDF_BAD_POT_DEF spacecraft potential data can not be specified for multi-dimensional IDFS

data
UPDATE_IDF_BAD_SPIN_DEF start of spin data source can not be specified for multi-dimensional IDFS

data
UPDATE_IDF_BAD_PMI_DEF euler angle can not be specified for multi-dimensional IDFS data
UPDATE_IDF_BAD_CP_DEF celestial position angles can not be specified for multi-dimensional IDFS

data
UPDATE_IDF_BAD_BKGD_DEF background data can not be specified for multi-dimensional IDFS data
ASCII_AFTER_SENSOR all ASCII and mode-dependent tables must be defined after all other tables

are defined in the VIDF
CONST_ANG_MALLOC no memory for angle offset values
CONST_TEMP_MALLOC no memory for temporary working area
CONST_IDF_ELE_NOT_FOUND the data item being requested was not found in the VIDF file

file_open (1R) file_open (1R)

 103 December 28, 2012

STATUS CODE EXPLANATION OF STATUS
CONST_IDF_NO_ENTRY the field being requested is not defined
CONST_IDF_TBL_NUM the table being requested exceeds the number of defined tables
CONST_IDF_CON_NUM the constant being requested exceeds the number of defined constants
CONST_IDF_MANY_BYTES the number of elements being requested is more than the number of

elements available for the selected field
 error codes returned by get_data_key ()
 error codes returned by ReadVIDF ()
ALL_OKAY all IDFS files opened

In addition to the status codes listed above, other error/status codes may be returned in the case of a
database request. The user is referred to the webpage http://cluster/libdbSQL.html for an explanation of
the interface to the database which is used by the IDFS data access software. The write-up for the
modules dbIDFSGetRealTimeFile and dbIDFSGetFile are pertinent to the file_open module.

DESCRIPTION

File_open is the IDFS file open routine. The data set of interest is referenced through the
key value data_key which can be created using the get_data_key module. The files that are
opened, the header, data, and VIDF file, are dependent on the data set (data_key), file name
extension (exten) and the time range specified. The maximum number of files that can be
opened at one time is a system dependent value. For example, with SunOS, the maximum
number of open file descriptors is set at 256. This value can be modified; however, system
performance may be degraded as this value is increased.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. In
either case, the specified IDFS data set will only be opened once for each unique parameter
set. If additional calls are made to this routine with the same parameter set, the module
simply returns the ALL_OKAY status code. The user should call the
get_version_number routine to retrieve a unique version number instead of choosing this
value themselves. The retrieval of multiple data parameters from a single data source does
not constitute the need for multiple version numbers; a single version number will suffice.

The appropriate files are searched for within the current on-line database for the data set
designated. The database returns both the file name and a status code. The database
contains information about the satellite data on the local machine. The contents of the
database entries include the file name referencing the header file, data file or the VIDF file.
For playback data, the contents of the database entries also include the name of the primary
and/or secondary media names along with their respective data sizes and offsets on the
media. These entries are indexed by increasing universal time to expedite data searching.
If the files do exist on the local machine, the files are opened and the file descriptors are
saved in an internally defined structure for later use by the other IDFS routines. If the files
do not exist on the local machine, the appropriate error code is returned.

http://cluster/libdbSQL.html

file_open (1R) file_open (1R)

 104 December 28, 2012

This routine opens the first set of files within the time span over which data is to be
processed. For a real-time scenario, there is only one set of files for the time span being
processed. In post acquisition analysis, if there is more than one file set within the
requested time interval, the remaining files will be opened and processed after the currently
opened files are processed.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

Once the files have been opened successfully, the VIDF is loaded into memory. Selected
information from the VIDF file is retrieved and stored in an internally defined structure.
The fields selected are those pieces of information that are to be used by the other IDFS
routines. After the necessary elements have been read from the VIDF file, internal flags are
set to indicate that all sensors associated with the data set are to be processed and memory
to hold various information concerning each sensor is to be allocated by the routine
file_pos. If only a few of the sensors associated with the data set are to be processed, these
can be selected by the use of the routine select_sensor, which will reset the internal flags
such that only the necessary sensors will be processed and have space allocated.

ERRORS
All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO
. file_pos 1R

select_sensor 1R
get_data_key 1R
get_version_number 1R
ret_codes 1H
libbase_idfs 1H

BUGS

None

file_open (1R) file_open (1R)

 105 December 28, 2012

EXAMPLES
Open the real-time files associated with the virtual instrument RTLA, which is part of the
RETE instrument/experiment, which is part of the TSS-1 mission, which is identified with
the TSS project. In the calling sequence, indicate that instrument status data is not to be
requested for the data set in question.

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_SHORT status;
status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);

if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

status = file_open (data_key, "", vnum, -1, -1, -1, 0, -1, -1, -1, 0, 0);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by file_open routine.\n", status);
 exit (-1);
 }

The RTLA default data set was modified to remove all counts less than 2. This new data set
resides in the user's home directory and has the 2 character extension L2 appended to the
IDFS file names. In the calling sequence, indicate that instrument status data is to be
requested for the data set in question. To open this data set:

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_SHORT status;
status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }

file_open (1R) file_open (1R)

 106 December 28, 2012

get_version_number (&vnum);

status = file_open (data_key, "L2", vnum, -1, -1, -1, 0, -1, -1, -1, 0, 1);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by file_open routine.\n", status);
 exit (-1);
 }

file_pos (1R) file_pos (1R)

 107 December 28, 2012

FILE_POS
function - allocates memory for necessary idfs data structures and positions the file pointers
at the requested time in the files

SYNOPSIS
#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT file_pos (SDDAS_ULONG data_key, SDDAS_CHAR *exten,
 SDDAS_USHORT version, void *data_ptr,
 SDDAS_SHORT btime_yr, SDDAS_SHORT btime_day,
 SDDAS_LONG btime_sec, SDDAS_LONG btime_nano,
 SDDAS_SHORT etime_yr, SDDAS_SHORT etime_day,
 SDDAS_LONG etime_sec, SDDAS_LONG etime_nano)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file names when

default files are not to be used, otherwise a null string
version - IDFS data set identification number which allows for multiple

openings of the same data set
data_ptr - pointer to the data structure that is to hold sensor data and

pertinent ancillary data for the data set of interest (either idf_data
or tensor_data)

btime_yr - beginning year for data being requested
btime_day - beginning day of year for data being requested
btime_sec - beginning time of day in seconds for data being requested
btime_nano - beginning time of day residual in nanoseconds
etime_yr - ending year for data being requested
etime_day - ending day of year for data being requested
etime_sec - ending time of day in seconds for data being requested
etime_nano - ending time of day residual in nanoseconds
file_pos - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for FILE_POS

STATUS CODE EXPLANATION OF STATUS

POS_NOT_FOUND the requested data_key, exten, version combination has no memory
allocated for processing (user did not call file_open for this
combination)

POS_DATA_READ_ERROR read error on data file
SCOM_TBL_MALLOC no memory for table offset value for sensors being processed
SCOM_PTR_MALLOC no memory for pointers to the memory allocated to hold table offset

values
SCOM_INDEX_MALLOC no memory for sensor index array
SCOM_SEN_PTR_MALLOC no memory for array of structures which hold sensor-specific

information

file_pos (1R) file_pos (1R)

 108 December 28, 2012

STATUS CODE EXPLANATION OF STATUS
SEN_IDF_ELE_NOT_FOUND the data item being requested was not found in the VIDF file
SEN_IDF_NO_ENTRY the field being requested is not defined
SEN_IDF_MANY_BYTES the number of elements being requested is more than the number of

elements available for the selected field
SEN_IDF_TBL_NUM the table being requested exceeds the number of defined tables
SEN_IDF_CON_NUM the constant being requested exceeds the number of defined constants
CCOM_MATCH_MALLOC no memory for temporary array used for determining the number of

sensor table combinations
CCOM_VAL_MALLOC no memory for base offset and comparison offset values
CRIT_ACT_MALLOC no memory for critical action information
TBL_MISC_MALLOC no memory to hold table information for all integer tables
TBL_IDF_ELE_NOT_FOUND the data item being requested was not found in the VIDF file
TBL_IDF_MANY_BYTES the number of elements being requested is more than the number of

elements available for the selected field
TBL_IDF_TBL_NUM the table being requested exceeds the number of defined tables
TBL_IDF_CON_NUM the constant being requested exceeds the number of defined constants
TBL_IDF_NO_ENTRY the field being requested is not defined
TBL_VAR_NOT_RAW the table can only be a function of raw data since the table format

specifies an expanded loop-up table
TBL_VAR_NOT_CAL the table can only be a function of a calibration set since the table type

is a sweep-length dependent table and the table format specifies an
expanded look-up table

TBL_MALLOC no memory to hold values for all integer tables
GET_ACTION_MALLOC no memory for array that holds the actions for critical status bytes
CRIT_IDF_ELE_NOT_FOUND the data item being requested was not found in the VIDF file
CRIT_IDF_MANY_BYTES the number of elements being requested is more than the number of

elements available for the selected field
CRIT_IDF_TBL_NUM the table being requested exceeds the number of defined tables
CRIT_IDF_CON_NUM the constant being requested exceeds the number of defined constants
CRIT_IDF_NO_ENTRY the field being requested is not defined
MODE_PTR_MALLOC no memory for array of structures which hold mode-specific

information
MODE_TBL_MISC_MALLOC no memory to hold table information for all integer mode-dependent

tables
MODE_TBL_IDF_ELE_NOT_FOUND the data item being requested was not found in the VIDF file
MODE_TBL_IDF_MANY_BYTES the number of elements being requested is more than the number of

elements available for the selected field
MODE_TBL_IDF_TBL_NUM the table being requested exceeds the number of defined tables
MODE_TBL_IDF_CON_NUM the constant being requested exceeds the number of defined constants
MODE_TBL_IDF_NO_ENTRY the field being requested is not defined
MODE_TBL_VAR_NOT_RAW the table can only be a function of raw data since the table format

specifies an expanded loop-up table
MODE_TBL_VAR_NOT_CAL the table can only be a function of a calibration set since the table type

is sweep-length dependent table and the table format specifies an
expanded look-up table

MODE_TBL_MALLOC no memory to hold values for all integer mode-dependent tables
MODE_TBL_SZ_IDF_ELE_NOT_FOUND the data item being requested was not found in the VIDF file
MODE_TBL_SZ_IDF_MANY_BYTES the number of elements being requested is more than the number of

elements available for the selected field
MODE_TBL_SZ_IDF_TBL_NUM the table being requested exceeds the number of defined tables
MODE_TBL_SZ_IDF_CON_NUM the constant being requested exceeds the number of defined constants
MODE_TBL_SZ_IDF_NO_ENTRY the field being requested is not defined

file_pos (1R) file_pos (1R)

 109 December 28, 2012

STATUS CODE EXPLANATION OF STATUS
ALLOC_HDR_READ_ERROR read error on header file
ALLOC_HDR_MALLOC no memory for header record information
ALLOC_HDR_REALLOC no memory for header information expansion (header increased in size)
SWEEP_TIME_MALLOC no memory for time of sample values
TIME_OFF_MALLOC no memory for time offset values for individual sensors
EXP_IDF_ELE_NOT_FOUND the data item being requested was not found in the VIDF file
EXP_IDF_MANY_BYTES the number of elements being requested is more than the number of

elements available for the selected field
EXP_IDF_TBL_NUM the table being requested exceeds the number of defined tables
EXP_IDF_CON_NUM the constant being requested exceeds the number of defined constants
EXP_IDF_NO_ENTRY the field being requested is not defined
TIMING_MALLOC no memory for structures that hold timing information for pixel location
PBACK_LOS an LOS indicator record was encountered when trying to find the record

containing the requested start time (playback scenario only) - user is
advised to change the start time to either a previous or later time period

PBACK_NEXT_FILE a NEXT_FILE indicator record was encountered when trying to find the
record containing the requested start time (playback scenario only) -
user is advised to change the start time to either a previous or later time
period

POS_HDR_READ_ERROR read error on header file
POS_HDR_MALLOC no memory for header record information
POS_HDR_REALLOC no memory for header information expansion (header increased in size)
FILE_POS_DATA_GAP the time range requested lies within a gap found within the data file
FILE_POS_MODE error encountered when positioning file descriptors for instrument status

(mode) data
FILE_POS_PA error encountered while trying to position the pitch angle IDFS data set
FILE_POS_SPIN error encountered while trying to position the start of spin data source
FILE_POS_POT error encountered while trying to position the spacecraft potential IDFS

data set
FILE_POS_EULER error encountered while trying to position the euler angle IDFS data set
FILE_POS_CP error encountered while trying to position the celestial position angle

IDFS data set
FILE_POS_BKGD error encountered while trying to position the background IDFS data set
RHDR_READ_ERROR read error on header file
RHDR_HDR_MALLOC no memory for header information
RHDR_HDR_REALLOC no memory for header information expansion
PITCH_MALLOC no memory for structure that holds pitch angle information
PINFO_IDF_ELE_NOT_FOUND the data item being requested was not found in the VIDF file
PINFO_IDF_MANY_BYTES the number of element being requested is more than the number of

elements available for the selected field
PINFO_IDF_TBL_NUM the table being requested exceeds the number of defined tables
PINFO_IDF_CON_NUM the constant being requested exceeds the number of defined constants
PINFO_IDF_NO_ENTRY the field being requested is not defined
PA_UNIT_MALLOC no memory for normal vector definition for pitch angle data
PA_DATA_MALLOC no memory for data and normalization factors for pitch angle data
PA_TBL_MALLOC no memory for table number / table operation information for pitch

angle data
PA_UNIT_NORMAL definition of the normal vector for the pitch angle data is incomplete
NO_PA_CONSTANT the pitch angle constants are not defined in the VIDF file
PA_BAD_SRC the IDFS data source for the pitch angle data is not a scalar instrument
BAD_PA_FORMAT the format specification field for the pitch angle data is invalid
SPIN_SRC_MALLOC no memory for structure that holds start of spin data source info

file_pos (1R) file_pos (1R)

 110 December 28, 2012

STATUS CODE EXPLANATION OF STATUS
SPIN_SRC_BAD_SRC the start of spin data source is non-scalar
SPIN_SINFO_IDF_ELE_NOT_FOUND the data item being requested was not found in the VIDF file
SPIN_SINFO_IDF_MANY_BYTES the number of element being requested is more than the number of

elements available for the selected field
SPIN_SINFO_IDF_TBL_NUM the table being requested exceeds the number of defined tables
SPIN_SINFO_IDF_CON_NUM the constant being requested exceeds the number of defined constants
SPIN_SINFO_IDF_NO_ENTRY the field being requested is not defined
POT_INFO_IDF_ELE_NOT_FOUND the data item being requested was not found in the VIDF file
POT_INFO_IDF_MANY_BYTES the number of element being requested is more than the number of

elements available for the selected field
POT_INFO_IDF_TBL_NUM the table being requested exceeds the number of defined tables
POT_INFO_IDF_CON_NUM the constant being requested exceeds the number of defined constants
POT_INFO_IDF_NO_ENTRY the field being requested is not defined
POT_TBL_MALLOC no memory for table number / table operation information for spacecraft

potential data
POT_BAD_SRC the IDFS data source for the spacecraft potential data is not a scalar

instrument
BAD_SCPOT_FORMAT the format specification field for the spacecraft potential data is invalid
POT_MALLOC no memory for structure that holds spacecraft potential information
POT_DATA_MALLOC no memory for data and normalization factors for spacecraft potential

data
EULER_INFO_IDF_ELE_NOT_FOUND the data item being requested was not found in the VIDF file
EULER_INFO_IDF_MANY_BYTES the number of element being requested is more than the number of

elements available for the selected field
EULER_INFO_IDF_TBL_NUM the table being requested exceeds the number of defined tables
EULER_INFO_IDF_CON_NUM the constant being requested exceeds the number of defined constants
EULER_INFO_IDF_NO_ENTRY the field being requested is not defined
EULER_MALLOC no memory for structure that holds euler angle information
EULER_AXIS_MALLOC no memory euler angles and euler rotation axis information
EULER_IDF_DATA_MALLOC no memory for array of pointers for the idf_data structures needed to

hold the euler angle data read from the specified IDFS data source
EULER_BAD_SRC the IDFS data source for the euler angle data is not a scalar instrument
EULER_TBL_MALLOC no memory for table number / table operation information for euler

angle data
BAD_EULER_FORMAT the format specification field for the euler angle data is invalid
LESS_EULER_CONSTANT_ANGLES the number of euler angle constants defined in the VIDF file is less than

the number of euler angles defined in the VIDF file
LESS_EULER_CONSTANT_AXIS the number of euler rotation axis constants defined in the VIDF file is

less than the number of euler angles defined in the VIDF file
MORE_EULER_CONSTANT_ANGLES the number of euler angle constants defined in the VIDF file is more

than the number of euler angles defined in the VIDF file
MORE_EULER_CONSTANT_AXIS the number of euler rotation axis constants defined in the VIDF file is

more than the number of euler angles defined in the VIDF file
TOO_MANY_EULER this data set defines more euler angles than the IDFS system can handle
CP_INFO_IDF_ELE_NOT_FOUND the data item being requested was not found in the VIDF file
CP_INFO_IDF_MANY_BYTES the number of element being requested is more than the number of

elements available for the selected field
CP_INFO_IDF_TBL_NUM the table being requested exceeds the number of defined tables
CP_INFO_IDF_CON_NUM the constant being requested exceeds the number of defined constants
CP_INFO_IDF_NO_ENTRY the field being requested is not defined
CP_TBL_MALLOC no memory for table number / table operation information for celestial

position angle data

file_pos (1R) file_pos (1R)

 111 December 28, 2012

STATUS CODE EXPLANATION OF STATUS
NO_CP_CONSTANT the celestial position angle constants are not defined in the VIDF file
CP_STR_MALLOC no memory for structure that holds celestial position angle information
CP_DATA_MALLOC no memory for data and normalization factors for celestial position

angle data
CP_BAD_SRC the IDFS data source for the celestial position angle data is not a scalar

instrument
NO_BKGD_CONSTANT the background constants are not defined in the VIDF file
BKGD_TBL_MALLOC no memory for table number / table operation information for

background data
BKGD_BAD_SRC the IDFS data source for the background data is not a scalar instrument
BKGD_MALLOC no memory for structure that holds background information
BKGD_DATA_MALLOC no memory for data and normalization factors for background data
BKGD_IDF_DATA_MALLOC no memory for array of pointers for the idf_data structures needed to

hold the background data read from the specified IDFS data source
BKGD_INFO_IDF_ELE_NOT_FOUND the data item being requested was not found in the VIDF file
BKGD_INFO_IDF_MANY_BYTES the number of element being requested is more than the number of

elements available for the selected field
BKGD_INFO_IDF_TBL_NUM the table being requested exceeds the number of defined tables
BKGD_INFO_IDF_CON_NUM the constant being requested exceeds the number of defined constants
BKGD_INFO_IDF_NO_ENTRY the field being requested is not defined
FILE_POS_INVALID_DATA the data structure passed as an argument is not a valid data structure to

use - may have been previously freed
 Error codes returned by read_drec ()
 Error codes returned by ReadVIDF ()
ALL_OKAY routine terminated successfully

DESCRIPTION

File_pos is the IDFS data positioning routine. The data set of interest is referenced through
the key value data_key which can be created using the get_data_key module. This routine
uses the currently opened files for the requested data set and sets the current data pointer to
the data sample or sweep whose beginning time is closest to the requested start time. If
btime_sec is equal to the value -1, the file position is set at the beginning of the current
real-time data file. If btime_sec is set equal to the value -2, the file position is set to the
present location within the current real-time data file. If the beginning time indicates post
acquisition analysis, calls are made to the routine read_drec in order to position the data
pointer as close to the requested start time as possible, using the btime_nano time
component to get to the closest nanosecond, and the data structure is filled in and ready for
access upon return from file_pos ().

Once the data set of interest has been successfully positioned, any ancillary data sources
that are defined are also opened and positioned. If the data set of interest contains pitch
angle information within the VIDF file, an attempt is made to open the IDFS data set that
contains the magnetic field elements to be used in the pitch angle calculations and to set the
data pointer for the pitch angle IDFS data set to the data sample or sweep whose beginning
time is closest to the time at which the data set of interest has been positioned. If the data
set of interest contains spacecraft potential information within the VIDF file, an attempt is
made to open the IDFS data set that contains the spacecraft potential data values and to set
the data pointer for the spacecraft potential IDFS data set to the data sample or sweep whose

file_pos (1R) file_pos (1R)

 112 December 28, 2012

beginning time is closest to the time at which the data set of interest has been positioned. If
the data set of interest contains start of spin information within the VIDF file, an attempt is
made to open the IDFS data set that contains the time for each spin period and to set the
data pointer for the start of spin IDFS data set to the data sample or sweep whose beginning
time is closest to the time at which the data set of interest has been positioned. If the data
set of interest contains euler angle information within the VIDF file, an attempt is made to
open the IDFS data set that contains the euler angle and euler rotation axis information used
in the euler angle calculations and to set the data pointer for the euler angle IDFS data set to
the data sample or sweep whose beginning time is closest to the time at which the data set
of interest has been positioned. If the data set of interest contains celestial position angle
information within the VIDF file, an attempt is made to open the IDFS data set that contains
the celestial position angle data (declination angle and right ascension angle) and to set the
data pointer for the celestial position IDFS data set to the data sample or sweep whose
beginning time is closest to the time at which the data set of interest has been positioned. If
the data set of interest contains background information within the VIDF file, an attempt is
made to open the IDFS data set that contains the background data values and to set the data
pointer for the background IDFS data set to the data sample or sweep whose beginning time
is closest to the time at which the data set of interest has been positioned.

Data positioning is performed only once for each unique parameter set. If additional calls
are made to this routine with the same parameter set, the module simply returns the
ALL_OKAY status code, with the exception being after a call to the module
reset_experiment_info, which closes the existing IDFS data set and opens the next IDFS
data set to be processed. It is imperative that a call to the file_pos routine be made
immediately after a successful return from the reset_experiment_info module in order for
the IDFS software to process the next IDFS data set correctly. Before the first call to the
file_pos routine can be made, a call to the routine file_open with the identical data_key,
exten and version parameters must have been made to obtain a set of file descriptors for the
appropriate VIDF, header and data files.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

The parameter data_ptr is a pointer to the data structure that is to hold all data pertinent to
the data set being processed. The data structure that is utilized is either an instance of the
idf_data structure or the tensor_data structure. The data structure is created and the
address to this structure is returned when a call to the create_idf_data_structure or
create_tensor_data_structure routine is made. The user also has the option of calling the
module create_data_structure, which determines what type of data structure is needed for

file_pos (1R) file_pos (1R)

 113 December 28, 2012

the IDFS data set of interest. In most cases, one data structure is sufficient to process any
number of distinct data sets. However, if more than one structure is needed, the user may
call the create_idf_data_structure or create_tensor_data_structure routine N times to
create N instances of the idf_data or tensor_data structure. The user must keep track of
which pointer to send to the IDFS routines that utilize this structure.

File_pos is also the IDFS routine that allocates memory blocks which are used to hold and
return information utilized by the IDFS routines. Memory is allocated to hold both the
header and data record information. Whereas the size of the data records stay fixed, the size
of the header records may change. File_pos allocates space based upon the size of the
header record associated with the data record read. Memory expansion for the header
information is handled by the read_drec routine. Memory is also allocated to hold
information relevant to the application of the data calibration sets, to hold sensor time offset
values and to hold full sweep values. The memory pointers for all of these elements are
stored within an internally defined structure that is identified with a specific data set.

File_pos also allocates space to hold the calibration data and the instrument mode flags that
are returned by the read_drec routine. If the currently assigned memory block is
determined to be insufficient in size (too small), the memory block is dynamically
expanded. The pointers to the two memory blocks are held in the idf_data structure. This
data structure is described in section 1S of the IDFS Programmers Manual.

The last task of this routine is to allocate memory for structure(s) that hold the table values
and critical status information for the sensors being processed. The memory pointer for this
array of structures is stored within an internally defined structure that is identified with a
specific data set. This routine assumes that the requested sensors have already been
selected through the routine select_sensor. If the routine select_sensor is not called, all
sensors are selected by the routine file_open.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

ERRORS

All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

file_pos (1R) file_pos (1R)

 114 December 28, 2012

SEE ALSO
reset_experiment_info 1R
file_open 1R
read_drec 1R
select_sensor 1R
get_data_key 1R
get_version_number 1R
create_data_structure 1R
create_idf_data_structure 1R
create_tensor_data_structure 1R
libbase_idfs 1H
ret_codes 1H
idf_data 1S
tensor_data 1S

BUGS

None

EXAMPLES
Position the real-time IDFS data files associated with the virtual instrument RTLA, which is
part of the RETE instrument/experiment, at the beginning of the data file. The RETE
instrument/experiment is part of the TSS-1 mission, which is identified with the TSS
project.

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_SHORT status;
void *idf_data_ptr;

status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

status = create_idf_data_structure (&idf_data_ptr);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by create_idf_data_structure routine.\n", status);
 exit (-1);
 }

file_pos (1R) file_pos (1R)

 115 December 28, 2012

status = file_open (data_key, "", vnum, -1, -1, -1, 0, -1, -1, -1, 0, 0);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by file_open routine.\n", status);
 exit (-1);
 }

status = file_pos (data_key, "", vnum, idf_data_ptr, -1, -1, -1, 0, -1, -1, -1, 0);

if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by file_pos routine.\n", status);
 exit (-1);
 }

file_pos (1R) file_pos (1R)

 116 December 28, 2012

first_idfs_sensor (1R) first_idfs_sensor (1R)

 117 December 28, 2012

FIRST_IDFS_SENSOR
function – returns the first IDFS sensor that is defined within the sensor set for the current
data record

SYNOPSIS
#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT first_idfs_sensor (SDDAS_ULONG data_key, SDDAS_CHAR *exten,
 SDDAS_USHORT version, SDDAS_SHORT *sensor_num)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file names when

default files are not to be used, otherwise a null string
version - IDFS data set identification number which allows for multiple

openings of the same data set
sensor_num - sensor identification number
first_idfs_sensor - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for FIRST_IDFS_SENSOR

STATUS CODE EXPLANATION OF STATUS

FIRST_SEN_NOT_FOUND the requested data_key, exten, version combination has no memory allocated
for processing (user did not call file_open for this combination)

ALL_OKAY routine terminated successfully

DESCRIPTION

First_idfs_sensor is the IDFS routine that will return the sensor identification number for
the first sensor that is defined within the sensor set of the current data record. The data set
of interest is referenced through the key value data_key which can be created using the
get_data_key module. This module is helpful when processing instrument status (mode)
data. Although the instrument status data is not sensor-specific, that is, the data pertain to
all sensors within the sensor set, the instrument status data is acquired using the IDFS read
routine read_drec and read_drec requires a sensor identification number as one of its
arguments.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

first_idfs_sensor (1R) first_idfs_sensor (1R)

 118 December 28, 2012

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

ERRORS
All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

file_open 1R
read_drec 1R
get_data_key 1R
get_version_number 1R
libbase_idfs 1H
ret_codes 1H

BUGS

None

EXAMPLES

Retrieve the sensor identification number for the first sensor that is defined within the
sensor set of the current data record.

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_SHORT status, sensor_number;

status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

first_idfs_sensor (1R) first_idfs_sensor (1R)

 119 December 28, 2012

status = first_idfs_sensor (data_key, "", vnum, &sensor_number);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by first_idfs_sensor routine.\n", status);
 exit (-1);
 }

first_idfs_sensor (1R) first_idfs_sensor (1R)

 120 December 28, 2012

free_experiment_info (1R) free_experiment_info (1R)

 121 December 28, 2012

FREE_EXPERIMENT_INFO
function - frees all the memory allocated by the IDFS routines

SYNOPSIS

#include "libbase_idfs.h"

void free_experiment_info (void)

ARGUMENTS

No arguments for this routine

DESCRIPTION

Free_experiment_info is the IDFS routine that frees all memory that has been allocated by
the IDFS routines. The computer operating system normally takes care of freeing any
memory before terminating the program; however, for a clean exit, the user should call this
module before exiting from the program. In addition, the user may call this module if a
total restart of the IDFS software is desired without restarting the program. In the case of a
total restart, the user is advised to call the module init_idfs before any other IDFS routine
since the free_experiment_info routine merely frees allocated memory; it does not re-
initialize variables used by the IDFS software.

If any idf_data structures were created using the create_idf_data_structure or
create_data_structure routine, free_experiment_info will free the memory associated
with elements contained in the idf_data structure and the data structure itself. The user
must not free the memory since the IDFS software will also attempt to free the memory.

If any tensor_data structures were created using the create_tensor_data_structure or
create_data_structure routine, free_experiment_info will free the memory associated
with elements contained in the tensor_data structure and the data structure itself. The user
must not free the memory since the IDFS software will also attempt to free the memory.

ERRORS

This routine returns no status or error codes.

SEE ALSO

init_idfs 1R
create_data_structure 1R
create_idf_data_structure 1R
create_tensor_data_structure 1R
libbase_idfs 1H

BUGS

None

free_experiment_info (1R) free_experiment_info (1R)

 122 December 28, 2012

EXAMPLES
The usage of this routine is quite simple since no parameters are needed:

#include "libbase_idfs.h"

free_experiment_info ();

free_version_info (1R) free_version_info (1R)

 123 December 28, 2012

FREE_VERSION_INFO
function - frees the memory allocated by the IDFS routines for the specified version number

SYNOPSIS

#include "libbase_idfs.h"

void free_version_info (SDDAS_USHORT version)

ARGUMENTS

version - IDFS data set identification number which allows for multiple
openings of the same data set

DESCRIPTION

Free_version_info is the IDFS routine that frees all memory that has been allocated by the
IDFS routines for the specified version number. The computer operating system normally
takes care of freeing any memory before terminating the program; however, for a clean exit,
the user should call this module before exiting from the program. If the user desires a total
restart of the IDFS software without restarting the program, the user should not use this
module but should use the free_experiment_info module.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

ERRORS

This routine returns no status or error codes.

SEE ALSO

free_experiment_info 1R
get_version_number 1R
libbase_idfs 1H

BUGS

None

EXAMPLE

Free the memory allocated by the IDFS software for the specified version number. Assume
this value has been previously set by the get_version_number routine.

free_version_info (1R) free_version_info (1R)

 124 December 28, 2012

#include "libbase_idfs.h"

SDDAS_USHORT vnum;

free_version_info (vnum);

get_data_key (1R) get_data_key (1R)

 125 December 28, 2012

GET_DATA_KEY
function - create a key value which identifies the data set of interest

SYNOPSIS

#include "libdb.h"
#include "ret_codes.h"

SDDAS_SHORT get_data_key (SDDAS_CHAR *pstr, SDDAS_CHAR *mstr,
 SDDAS_CHAR *estr, SDDAS_CHAR *istr,
 SDDAS_CHAR *vstr, SDDAS_ULONG *data_key)

ARGUMENTS
 pstr - the assigned database name for the project to be accessed

mstr - the assigned database name for the mission to be accessed
estr - the assigned database name for the experiment to be accessed
istr - the assigned database name for the instrument to be accessed
vstr - the assigned database name for the virtual instrument to be accessed
data_key - unique value which indicates the data set being requested
get_data_key - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for GET_DATA_KEY

STATUS CODE EXPLANATION OF STATUS

DKEY_PROJECT invalid project name
DKEY_MISSION invalid mission name
DKEY_EXPERIMENT invalid experiment name
DKEY_INSTRUMENT invalid instrument name
DKEY_VINST invalid virtual instrument name
ALL_OKAY routine terminated successfully

DESCRIPTION

Get_data_key is the IDFS routine which creates a key that reflects the data set being
accessed by utilizing the assigned database names for the project, mission, experiment,
instrument and virtual instrument of interest. The IDFS routine fields_to_key performs the
same function but works with the assigned database numbers instead of the assigned
database names. Most of the IDFS routines utilize key values; therefore, a call to either this
routine or to the fields_to_key routine must be made before any of the other IDFS routines
that utilize a key value can be called.

The user selects the data set of interest by specifying the name of a virtual instrument from
a specific instrument, which comes from a parent experiment within a mission which is
associated with a specific project. All references for these items are through assigned
database names. Since the IDFS data access software must interface with the database, the
user must include the file libdb.h in their code when the get_data_key module is called.

get_data_key (1R) get_data_key (1R)

 126 December 28, 2012

ERRORS
All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO
fields_to_key 1R
ret_codes 1H

BUGS

None

EXAMPLES

Retrieve the data key for the virtual instrument RTLA, which is part of the RETE
instrument/experiment, which is part of the TSS-1 mission, which is identified with the TSS
project.

#include "libdb.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_SHORT ret_val;

ret_val = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
if (ret_val != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", ret_val);
 exit (-1);
 }

get_version_number (1R) get_version_number (1R)

 127 December 28, 2012

GET_VERSION_NUMBER
 function - returns a unique IDFS data set identification number

SYNOPSIS
 #include "libbase_idfs.h"

 void get_version_number (SDDAS_USHORT *version)

ARGUMENTS

version - IDFS data set identification number which allows for multiple
openings of the same data set

DESCRIPTION

Get_version_number is the IDFS routine that returns a unique IDFS data set identification
number that is to be used as a parameter to the other IDFS routines. This parameter allows
multiple file openings for an IDFS data set. For multiple file openings of the same IDFS
data set, the version number must be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. If the
user is opening many different IDFS data sets, but just opening each data set once, the user
may pass the same version number for each of the different IDFS data sets. For example, if
the user is going to process RTLA and RTLB data, one version number is sufficient. The
user should call the get_version_number routine to be guaranteed a unique version
number.

ERRORS
 This routine returns no status or error codes.

BUGS
 None

EXAMPLES
 Retrieve a unique version number to be used by the IDFS routines.

 #include "libbase_idfs.h"

 SDDAS_USHORT vnum;

 get_version_number (&vnum);

get_version_number (1R) get_version_number (1R)

 128 December 28, 2012

init_idfs (1R) init_idfs (1R)

 129 December 28, 2012

INIT_IDFS
function - initializes the system for processing IDFS information

SYNOPSIS

#include "libbase_idfs.h"

void init_idfs (void)

ARGUMENTS

No arguments for this routine

DESCRIPTION

Init_idfs is the IDFS routine that initializes the system to allow processing of the
information contained in the IDFS files. A call must be made to this routine before any of
the other IDFS routines documented in this manual can be utilized.

Since the IDFS data access software must interface with the database, calls must be made to
the dbInitialize and CfgInit modules when the init_idfs module is called. The user is
referred to the webpages http://cluster/libdbSQL.html and http://cluster/libCfg.html for an
explanation of these routines.

ERRORS

This routine returns no status or error codes.

BUGS

None

EXAMPLES
The usage of this routine is quite simple since no parameters are needed:

#include "libbase_idfs.h"

CfgInit ();
dbInitialize ();
init_idfs ();

http://cluster/libdbSQL.html
http://cluster/libCfg.html

init_idfs (1R) init_idfs (1R)

 130 December 28, 2012

next_file_start_time (1R) next_file_start_time (1R)

 131 December 28, 2012

NEXT_FILE_START_TIME
function - returns the time that is to be used to retrieve the next data file

SYNOPSIS

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT next_file_start_time (SDDAS_ULONG data_key,
 SDDAS_CHAR *exten, SDDAS_USHORT version,
 SDDAS_CHAR mode_data, SDDAS_SHORT *start_yr,
 SDDAS_SHORT *start_day, SDDAS_LONG *start_sec,
 SDDAS_LONG *start_nano)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file names

when default files are not to be used, otherwise a null string
version - IDFS data set identification number which allows for multiple

openings of the same data set
mode_data - flag indicating if the time for instrument status (mode) data is

being requested
0 - the time for instrument status data is not being

requested
1 - the time for instrument status data is being
 requested

start_yr - year for retrieval of next data file
start_day - day of year for retrieval of next data file
start_sec - time of day in seconds for retrieval of next data file
start_nano - time of day residual in nanoseconds
next_file_start_time - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for NEXT_FILE_START_TIME

STATUS CODE EXPLANATION OF STATUS

NEXT_FILE_TIME_NOT_FOUND the requested data_key, exten, version combination has no memory allocated
for processing (user did not call file_open for this combination)

NEXT_FILE_TIME_FILE_OPEN the user did not request mode data processing when file_open was called
NEXT_FILE_TIME_INFO_DUP the requested data_key, exten, version combination has no memory allocated

for the instrument status information
ALL_OKAY routine terminated successfully

DESCRIPTION

Next_file_start_time is the IDFS routine that will return the start time that will trigger the
retrieval of the next data file to be processed. The data set of interest is referenced through
the key value data_key which can be created using the get_data_key module. This routine
should be called only in the case of a playback database request. When the return code
from the read_drec, read_tensor_data, start_image, fill_data, fill_discontinuous_data,

next_file_start_time (1R) next_file_start_time (1R)

 132 December 28, 2012

fill_mode_data, sweep_data, sweep_discontinuous_data, sweep_mode_data or file_pos
routine indicates that the end of the current data file has been reached (LOS_STATUS or
NEXT_FILE_STATUS), the next_file_start_time module should be called and the time
values returned should be sent to the reset_experiment_info routine.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

ERRORS

All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

file_open 1R
reset_experiment_info 1R
get_version_number 1R
get_data_key 1R
file_pos 1R
read_drec 1R
read_tensor_data 1R
start_image 1R
fill_data 2R
fill_discontinuous_data 2R
fill_mode_data 2R
sweep_data 2R
sweep_discontinuous_data 2R

next_file_start_time (1R) next_file_start_time (1R)

 133 December 28, 2012

sweep_mode_data 2R
ret_codes 1H
libbase_idfs 1H

BUGS
 None

EXAMPLES

Determine the start time to be used to retrieve the next data file for the virtual instrument
RTLA, which is part of the RETE instrument/experiment, which is part of the TSS-1
mission, which is identified with the TSS project. In the calling sequence, indicate that the
time for instrument status data is not being requested for the data set in question.

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_LONG start_sec, start_nsec;
SDDAS_SHORT status, start_yr, start_day;

status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

status = next_file_start_time (data_key, "", vnum, 0, &start_yr, &start_day,
 &start_sec, &start_nsec);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by next_file_start_time routine.\n", status);
 exit (-1);
 }

next_file_start_time (1R) next_file_start_time (1R)

 134 December 28, 2012

override_potential_polynomial (1R) override_potential_polynomial (1R)

 135 December 28, 2012

OVERRIDE_POTENTIAL_POLYNOMIAL
function – overrides the slope and intercept values defined for the first order polynomial
that is used to adjust the spacecraft potential data used by the specified data set

SYNOPSIS

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT override_potential_polynomial (SDDAS_ULONG data_key,
 SDDAS_CHAR *exten, SDDAS_USHORT version,
 SDDAS_FLOAT slope, SDDAS_FLOAT intercept)

ARGUMENTS

data_key - unique value which indicates the data set of
interest

exten - two character extension to be added to IDFS
file names when default files are not to be
used, otherwise a null string

version - IDFS data set identification number which
allows for multiple openings of the same data
set

slope - new slope value to be used in the polynomial
equation

intercept - new intercept value to be used in the
polynomial equation

override_potential_polynomial - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for OVERRIDE_POTENTIAL_POLYNOMIAL

STATUS CODE EXPLANATION OF STATUS
OVERRIDE_NOT_FOUND the requested data_key, exten, version combination has no memory

allocated for processing (user did not call file_open for this combination)
OVERRIDE_NO_POT there is no spacecraft potential data defined for this data set
OVERRIDE_NO_POT_TBLS there are no tables defined for this data set which are a function of

spacecraft potential data (tbl_var = 3)
OVERRIDE_TOO_MANY_POT_TBLS

there is more than one table defined for this data set which is a function of
spacecraft potential data (tbl_var = 3)

OVERRIDE_TBL_FMT_MALLOC no memory for the table format (tbl_fmt) values
OVERRIDE_BAD_TBL_FMT_VALUE the table format values do not specify a first order polynomial
 error codes returned by ReadVIDF ()
ALL_OKAY routine terminated successfully

DESCRIPTION

Override_potential_polynomial is the IDFS routine that can be used to override the
coefficients of the polynomial equation that is used to modify the spacecraft potential data
before it is used to convert the science data and / or scan data for the selected data set into
scientific units. The original polynomial equation is defined within a table in the VIDF file

override_potential_polynomial (1R) override_potential_polynomial (1R)

 136 December 28, 2012

for the data set specified. This table must have the tbl_var value set to 3, indicating that the
table is a function of spacecraft potential data. The data set of interest is referenced through
the key value data_key which can be created using the get_data_key module. This routine
must be called after the routine file_open and before the routine file_pos if this routine is to
be utilized properly. If this routine is called multiple times with the identical data_key,
exten and version parameters, the slope and intercept values from the last call will be saved
and utilized.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

ERRORS

All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

file_pos 1R
file_open 1R
get_data_key 1R
get_version_number 1R
ret_codes 1H
libbase_idfs 1H
convert_to_units 1R

BUGS

None

override_potential_polynomial (1R) override_potential_polynomial (1R)

 137 December 28, 2012

EXAMPLES
Modify the polynomial coefficients associated with the spacecraft potential data for the
virtual instrument CPXP1L, which is part of the 3DX1 instrument, which is part of the
PEACE experiment, which is part of the CLUSTER-1 mission, which is identified with the
CLUSTERII project.

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_FLOAT slope, intercept;
SDDAS_ULONG data_key;
SDDAS_LONG btime_sec, btime_nano, etime_sec, etime_nano;
SDDAS_USHORT vnum;
SDDAS_SHORT status;

status = get_data_key ("CLUSTERII", "CLUSTER-1", "PEACE", "3DX1", "CPXP1L",

 &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

 btime_sec = (19 * 3600) + (50 * 60) + 0;
 btime_nano = 0;
 etime_sec = (19 * 3600) + (51 * 60) + 0;
 etime_nano = 0;

status = file_open (data_key, "", vnum, 2002, 7, btime_sec, btime_nano, 2002, 7,
 etime_sec, etime_nano, 0);

 if (status != ALL_OKAY)
{
 printf ("\n Error %d from file_open routine.\n", status);
 exit (-1);
}

slope = 1.0;
intercept = 1.5;
status = override_potential_polynomial (data_key, "", vnum, slope, intercept);
if (status != ALL_OKAY)
{
 printf ("\n Error %d from override_potential_polynomial routine.\n", status);
 exit (-1);
}

override_potential_polynomial (1R) override_potential_polynomial (1R)

 138 December 28, 2012

read_drec (1R) read_drec (1R)

 139 December 28, 2012

READ_DREC
function - read data from an IDFS file and return the data in raw units (telemetry level) in
the specified idf_data structure

SYNOPSIS

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT read_drec (SDDAS_ULONG data_key, SDDAS_CHAR *exten,
 SDDAS_USHORT version, void *idf_data_ptr,
 SDDAS_SHORT sen, SDDAS_CHAR fwd,
 SDDAS_CHAR full_swp)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file names when default

files are not to be used, otherwise a null string
version - IDFS data set identification number which allows for multiple

openings of the same data set
idf_data_ptr - pointer to the idf_data structure that is to hold sensor data

and pertinent ancillary data for the data set of interest
sen - sensor identification number
fwd - next time sample

0 - do not advance to the next time sample
after obtaining data

1 - advance to the next time sample after
obtaining data

full_swp - data return length (this option applicable only if the sensor
is associated with a scalar data set)

0 - return a single data value
1 - return n_sample data values

read_drec - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for READ_DREC

STATUS CODE EXPLANATION OF STATUS
DREC_NOT_FOUND the requested data_key, exten, version combination has no memory

allocated for processing (user did not call file_open for this combination)
DREC_NO_FILES data and header files have not been opened
DREC_READ_ERROR read error on data file
PARTIAL_READ the number of bytes read from the file being accessed did not match the

number of bytes requested. This code is returned only for the playback
scenario. The code EOF_STATUS is returned for the real-time scenario.

DREC_HDR_READ_ERROR read error on header file
DREC_HDR_MALLOC no memory for header record information
DREC_HDR_REALLOC no memory for header information expansion (header increased in size)

read_drec (1R) read_drec (1R)

 140 December 28, 2012

STATUS CODE EXPLANATION OF STATUS
RESET_DATA_MALLOC no memory for sensor data array in the idf_data structure
RESET_DATA_REALLOC no memory for sensor data array expansion in the idf_data structure
RESET_EULER_REALLOC no memory for euler angle array expansion in the idf_data structure
RESET_ANGLE_REALLOC no memory for azimuthal sample angle array expansion in the idf_data

structure
RESET_PITCH_MALLOC no memory for pitch angle array in the idf_data structure
RESET_PITCH_REALLOC no memory for pitch angle array expansion in the idf_data structure
RESET_DCOS_MALLOC no memory for direction cosine structure
RESET_DCOS_VAL_MALLOC no memory for direction cosine values
RESET_DCOS_VAL_REALLOC no memory for expansion of direction cosine values
RESET_MODE_REALLOC no memory for expansion of instrument mode flags array
ALLOC_EV_REALLOC no memory for sweep array expansion in the idf_data structure
RESET_CSET_MALLOC no memory for calibration set size array in the idf_data structure
CRIT_TBL_NOT_FOUND the table requested was not found amongst the sensor tables
PA_BAD_TIMES the end time of the sample is less than the start time of the sample for pitch

angle data
UPDATE_IDF_ELE_NOT_FOUND the data item being requested was not found in the VIDF file
UPDATE_IDF_MANY_BYTES the number of elements being requested is more than the number of

elements available for the selected field
UPDATE_IDF_TBL_NUM the table being requested exceeds the number of defined tables
UPDATE_IDF_CON_NUM the constant being requested exceeds the number of defined constants
UPDATE_IDF_NO_ENTRY the field being requested is not defined
WRONG_HEADER_FORMAT multi-dimensional IDFS data storage is not supported by this module
CREATE_TBL_MALLOC no memory for table values (tbl) when the table is expanded using the

coefficients from the VIDF file
CREATE_IDF_NO_ENTRY the field being requested is not defined
CREATE_IDF_ELE_NOT_FOUND the data item being requested was not found in the VIDF file
CREATE_IDF_TBL_NUM the table being requested exceeds the number of defined tables
CREATE_IDF_MANY_BYTES the number of elements being requested is more than the number of

elements available for the selected field
CREATE_IDF_CON_NUM the constant being requested exceeds the number of defined constants
CREATE_BAD_TBL_OFFSET invalid tbl_off value encountered
READ_IN_MALLOC no memory for table values (tbl) read straight from the VIDF file
READ_IN_IDF_ELE_NOT_FOUND the data item being requested was not found in the VIDF file
READ_IN_IDF_MANY_BYTES the number of elements being requested is more than the number of

elements available for the selected field
READ_IN_IDF_TBL_NUM the table being requested exceeds the number of defined tables
READ_IN_IDF_CON_NUM the constant being requested exceeds the number of defined constants
READ_IN_IDF_NO_ENTRY the field being requested is not defined
READ_IN_BAD_TBL_OFFSET invalid tbl_off value encountered
NEW_SCALE_MALLOC no memory to hold the scale factors to be applied to the table values
NEW_IDF_ELE_NOT_FOUND the data item being requested was not found in the VIDF file
NEW_IDF_MANY_BYTES the number of elements being requested is more than the number of

elements available for the selected field
NEW_IDF_TBL_NUM the table being requested exceeds the number of defined tables
NEW_IDF_CON_NUM the constant being requested exceeds the number of defined constants
NEW_IDF_NO_ENTRY the field being requested is not defined
FILL_HEADER the header record read is a fill header, indicating that the header record has

not been received by the workstation at the time of the read from the file.
This code is returned only for the playback scenario. The code
EOF_STATUS is returned for the real-time scenario.

PA_BAD_FRAC invalid normalization factor calculated for pitch angle data

read_drec (1R) read_drec (1R)

 141 December 28, 2012

STATUS CODE EXPLANATION OF STATUS
PA_BAD_SRC the IDFS data source for the pitch angle data is not a scalar instrument
BAD_PA_FORMAT the format specification field for the pitch angle data is invalid
NEW_BAD_TBL_OFFSET invalid tbl_off value encountered
CHK_DATA_NOT_FOUND an error was encountered when trying to access the structure that holds

information pertinent to one of the IDFS data sets being processed
NUM_CAL_REALLOC no memory for expansion of calibration array
HDR_FMT_ONE_MALLOC no memory for elements pertinent to original idfs definition
POT_BAD_FRAC invalid normalization factor calculated for spacecraft potential data
POT_BAD_SRC the IDFS data source for the spacecraft potential data is not a scalar

instrument
BAD_SCPOT_FORMAT the format specification field for the spacecraft potential data is invalid
POT_BAD_TIMES the end time of the sample is less than the start time of the sample for

spacecraft potential data
RESET_POT_REALLOC no memory for spacecraft potential array expansion in the idf_data

structure
EULER_BAD_SRC the IDFS data source for the euler angle data is not a scalar instrument
EULER_BAD_TIMES the end time of the sample is less than the start time of the sample for euler

angle data
EULER_BAD_FRAC invalid normalization factor calculated for euler angle data
BAD_EULER_FORMAT the format specification field for the euler angle data is invalid
LESS_EULER_CONSTANT_ANGLES the number of euler angle constants defined in the VIDF file is less than

the number of euler angles defined in the VIDF file
LESS_EULER_CONSTANT_AXIS the number of euler rotation axis constants defined in the VIDF file is less

than the number of euler angles defined in the VIDF file
MORE_EULER_CONSTANT_ANGLES the number of euler angle constants defined in the VIDF file is more than

the number of euler angles defined in the VIDF file
MORE_EULER_CONSTANT_AXIS the number of euler rotation axis constants defined in the VIDF file is

more than the number of euler angles defined in the VIDF file
CP_BAD_TIMES the end time of the sample is less than the start time of the sample for

celestial position angle data
BAD_CP_FORMAT the format specification field for the celestial position angle data is invalid
CP_BAD_FRAC invalid normalization factor calculated for celestial position angle data
CP_BAD_SRC the IDFS data source for the celestial position angle data is not a scalar

instrument
RESET_CP_REALLOC no memory for celestial position angle array expansion in the idf_data

structure
BKGD_BAD_FRAC invalid normalization factor calculated for background data
BKGD_BAD_TIMES the end time of the sample is less than the start time of the sample for

background data
BAD_BKGD_FORMAT the format specification field for the background data is invalid
RESET_BKGD_REALLOC no memory for background array expansion in the idf_data structure
RESET_TINFO_MALLOC no memory for structure that holds coordinate transformation data in the

idf_data structure
WRONG_DATA_STRUCTURE incompatibility between IDFS data set and IDFS data structure used to

hold the data being returned
DREC_EOF_NO_SENSOR no data found for the requested sensor – eof on forward (real-time scenario

only)
DREC_EOF_SENSOR data found for the requested sensor – eof on forward (real-time scenario

only)
DREC_NO_SENSOR no data found for the requested sensor
EOF_STATUS eof encountered on file being accessed (real-time scenario only)
LOS_STATUS loss of signal encountered

read_drec (1R) read_drec (1R)

 142 December 28, 2012

STATUS CODE EXPLANATION OF STATUS
NEXT_FILE_STATUS the end of the current data file being processed has been reached
 Error codes returned by file_pos ()
 Error codes returned by reset_experiment_info ()
 Error codes returned by convert_to_units ()
ALL_OKAY data for requested sensor is returned

DESCRIPTION

Read_drec is the IDFS data read routine, returning data for a single sensor. The sensor is
indicated through the sensor number (sen). The data set of interest is referenced through the
key value data_key which can be created using the get_data_key module. The routine
returns not only the data for the sensor but also most of the pertinent ancillary data
concerning the state of the virtual instrument including time, instrument status (mode)
values, all applicable correction and calibration data, sweep step values, azimuthal angle
values, pitch angle values, spacecraft potential values and background values where
applicable. All data is returned in raw units (telemetry format). To convert the data into the
unit desired, the user should utilize the convert_to_units routine, which is explained in
section 1R of the IDFS Programmers Manual.

In cases where pitch angle data is not needed, the routine
turn_off_pitch_angle_computations may be called in order to save time performing
unnecessary pitch angle computations. By default, euler angle information, if pertinent to
the data set of interest, is not returned from the read_drec module unless the routine
turn_on_euler_angle_computations has been called. In addition, celestial position angle
information, if pertinent to the data set of interest, is not returned from the read_drec
module unless the routine turn_on_celestial_position_computations has been called.

The returned data is placed in the idf_data structure that is referenced by the argument
idf_data_ptr. The argument idf_data_ptr is a pointer to the structure that is to hold all
data pertinent to the data set being processed. The structure is created and the address to
this structure is returned when a call to the create_idf_data_structure routine is made.
The user also has the option of calling the module create_data_structure, which
determines what type of data structure is needed for the IDFS data set of interest. In most
cases, one data structure is sufficient to process any number of distinct data sets. However,
if more than one structure is needed, the user may call the create_idf_data_structure
routine N times to create N instances of the idf_data structure. The user must keep track of
which pointer to send to the IDFS routines that utilize this structure. The contents of this
structure is described in section 1S of the IDFS Programmers Manual.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a

read_drec (1R) read_drec (1R)

 143 December 28, 2012

single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

If the sensor returns scalar data, the number of data points returned in a given call can be
changed through the variable full_swp. If full_swp is 0, the data is returned one sample at
a time. If full_swp is 1, then all of the data, from the current data value through the end of
the sensor set, are returned. With the exception of the first call to the read_rec routine, if
full_swp is always set to 1 for a scalar sensor, the number of samples returned at each call
is n_sample, which is defined in the header record. The number of samples returned at the
first call depends on the initial position of the data pointer. The number of data values
returned is always indicated in the idf_data structure.

After the data has been read, the current data pointer will be either be advanced to the next
set of data values or remain at the current set of data values, depending upon the value of
the variable fwd. For sweeping data, the pointer is advanced to the next full sweep with
each forward. When used with scalar values, the pointer is advanced to the next value or to
the next sensor set depending on whether the current value of full_swp is 0 or 1,
respectively. By keeping the pointer at the same sensor set, repeated calls using the same
virtual instrument but different sensors can be made, ensuring that all of the data returned
was taken at the same time. Since the data is placed into the data arrays before the current
data pointer is advanced, the user should check the status of the element filled_data within
the idf_data structure if any status code other than ALL_OKAY is returned. This flag
value will indicate if the data arrays have been filled and this data should be processed
before further action is taken in accordance with the status code returned.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

There are two sets of time values returned by the read_drec routine. Within the idf_data
structure, there are the elements byear, bday, bmilli, bnano, eyear, eday, emilli and
enano. These time elements are associated with the requested sensor. The instrument
status (mode) values are not sensor-specific, that is, they pertain to all sensors within the
sensor set. Therefore, the time span encompassed by the instrument status values is
specified in the elements mode_byear, mode_bday, mode_bmilli, mode_bnano,
mode_eyear, mode_eday, mode_emilli and mode_enano within the idf_data structure.

read_drec (1R) read_drec (1R)

 144 December 28, 2012

ERRORS
All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

reset_experiment_info 1R
file_pos 1R
convert_to_units 1R
create_data_structure 1R
create_idf_data_structure 1R
get_data_key 1R
get_version_number 1R
turn_off_pitch_angle_computations 1R
turn_on_euler_angle_computations 1R
turn_on_celestial_position_computations 1R
ret_codes 1H
libbase_idfs 1H
idf_data 1S

BUGS
None

EXAMPLES

Obtain one sweep of data from sensor 2 in the virtual instrument RTLA, which is part of the
RETE instrument/experiment, which is part of the TSS-1 mission, which is identified with
the TSS project. Since this is a sweeping instrument, the full_swp variable is set to 1 (can
not retrieve part of a sweep). The pointer is moved to the next full sweep in the data array
after the data is obtained. The data is returned in the idf_data structure referenced by the
pointer idf_data_ptr.

#include "libbase_idfs.h"
#include "ret_codes.h"
SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_SHORT status;
void *idf_data_ptr;

status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

read_drec (1R) read_drec (1R)

 145 December 28, 2012

status = create_idf_data_structure (&idf_data_ptr);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by create_idf_data_structure routine.\n", status);
 exit (-1);
 }
status = read_drec (data_key, "", vnum, idf_data_ptr, 2, 1, 1);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by read_drec routine.\n", status);
 exit (-1);
 }

read_drec (1R) read_drec (1R)

 146 December 28, 2012

read_drec_spin (1R) read_drec_spin (1R)

 147 December 28, 2012

READ_DREC_SPIN
function - read data from an IDFS file and return data for a complete spin in raw units
(telemetry level) for the sensor requested

SYNOPSIS

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT read_drec_spin (SDDAS_ULONG data_key, SDDAS_CHAR *exten,
 SDDAS_USHORT version, SDDAS_SHORT sen,
 SDDAS_USHORT *start_ele, SDDAS_FLOAT *start_frac,
 SDDAS_USHORT *stop_ele, SDDAS_FLOAT *stop_frac,

 SDDAS_LONG *num_sweeps, void ***data_ptrs)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file names when

default files are not to be used, otherwise a null string
version - IDFS data set identification number which allows for multiple

openings of the same data set
sen - sensor identification number
start_ele - element number within the sweep where the spin starts
start_frac - percentage of data that is to be included for the element

within the sweep where the spin starts
stop_ele - element number within the sweep where the spin stops
stop_frac - percentage of data that is to be included for the element

within the sweep where the spin stops
num_sweeps - the number of sweeps processed for the spin
data_ptrs - array of pointers to the idf_data structure(s) that hold sensor

data and pertinent ancillary data for the data set of interest for
each sweep processed for the spin

read_drec_spin - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for READ_DREC_SPIN

STATUS CODE EXPLANATION OF STATUS
READ_SPIN_NOT_FOUND the requested data_key, exten, version combination has no memory

allocated for processing (user did not call file_open for this combination)
READ_SPIN_NO_START user did not call start_of_spin for this combination before calling this

module
READ_SPIN_SENSOR_NOT_FOUND the requested data_key, exten, version combination for one of the sensors

being processed has no memory allocated for processing
READ_SPIN_DSRC_READ error reading next record from spin data source to get next spin period
READ_SPIN_DSRC_BACK_SPIN the next spin period went backwards in time
START_ELE_BAD_SENSOR the sensor being requested is an invalid sensor number
START_ELE_SPIN_NO_SENSOR the sensor being requested was not selected as a sensor to be processed for

the data set in question (user did not call select_sensor for this combination)

read_drec_spin (1R) read_drec_spin (1R)

 148 December 28, 2012

STATUS CODE EXPLANATION OF STATUS
WRONG_HEADER_FORMAT multi-dimensional IDFS data storage is not supported by this module
READ_SPIN_ALL_REALLOC no memory for expansion of the array of pointers to the idf_data structures

that are allocated to hold the data for each sweep within the spin
READ_SPIN_PARTIAL a partial spin is being returned since there is no further data available past

this point in the spin
WRONG_DATA_STRUCTURE incompatibility between IDFS data set and IDFS data structure used to hold

the data being returned
 Error codes returned by read_drec ()
 Error codes returned by next_file_start_time ()
 Error codes returned by reset_experiment_info ()
 Error codes returned by file_pos ()
 Error codes returned by create_idf_data_structure ()
READ_SPIN_DATA_GAP a partial spin is being returned since a data gap was encountered while

acquiring the current spin
READ_SPIN_TERMINATE processing must be terminated since data for start of spin data source is no

longer available – partial spin is returned
ALL_OKAY data for requested sensor is returned

DESCRIPTION

Read_drec_spin is the IDFS data read routine that returns a full spin of data for a single
sensor. The sensor is indicated through the sensor number (sen). The data set of interest is
referenced through the key value data_key which can be created using the get_data_key
module. Read_drec_spin make use of the read_drec routine and therefore, returns not
only the data for the sensor but also most of the pertinent ancillary data concerning the state
of the virtual instrument including time, instrument status (mode) values, all applicable
correction and calibration data, sweep step values, azimuthal angle values, pitch angle
values, spacecraft potential values and background values where applicable.

The argument data_ptrs is an array of pointers to the collection of idf_data structures that
hold all data pertinent to the spin being processed. There is basically one idf_data structure
allocated for each sweep within the spin. The total number of sweeps contained within the
spin being processed is returned in the argument num_sweeps. The structures are created
as the need for another idf_data structure is encountered and the address to the newly
created structure is added to the array of pointers referenced by the data_ptrs argument.
These data structures are re-used as successive spins are processed; therefore, the user must
extract all data that is returned prior to the next call to the read_drec_spin routine. The
contents of the idf_data structure is described in section 1S of the IDFS Programmers
Manual. All data is returned in raw units (telemetry format). To convert the data into the
unit desired, the user should utilize the convert_to_units routine, which is explained in
section 1R of the IDFS Programmers Manual.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number

read_drec_spin (1R) read_drec_spin (1R)

 149 December 28, 2012

instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

For sweeping data, the start of each spin period does not always correlate with the first
element of the sweep. The start_ele argument returns the element number at which the spin
begins for the first sweep returned for the spin being processed. Likewise, the stop_ele
argument returns the element number at which the spin ends for the last sweep returned for
the spin being processed.

Within the IDFS paradigm, there are two methods utilized to determine the start of spin for
an IDFS data source. The first method is referred to as the angular method since the start of
spin is flagged as the point at which the azimuthal angle crosses over at 0 degrees, taking
into account some tolerance factor. The second method allows the time of each spin to be
explicitly defined and is specified by defining an IDFS data source that is to be used to
determine the spin periods within the VIDF for the data set of interest. When the second
method is utilized, the arguments start_frac and stop_frac will return values between 0.0
and 1.0, indicating the percentage of data that is to be included for the elements within the
sweep where the spin starts (start_ele) and stops (stop_ele). This percentage is calculated
based upon the start / stop time for the spin period and the start / stop time for the first and
last sweep processed. When the angular method is utilized, the arguments start_frac and
stop_frac will be set at 1.0 since the angle value pertains to the entire duration of the step.
The user does not need to concern themselves with which method is utilized and it is up to
their discretion whether they wish to utilize the contents of these two arguments when
processing the data returned by the read_drec_spin module.

Unlike the read_drec and read_tensor_data modules, the read_drec_spin module
automatically handles the acquisition of the next data file when the end of the current data
file has been reached. This action is performed since this module tries to retrieve a full spin
of data, not just a single sweep of data. Since the acquisition is automatically performed,
there is no need for the user to call the reset_experiment_info module within their code.

ERRORS
All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the

read_drec_spin (1R) read_drec_spin (1R)

 150 December 28, 2012

mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

file_open 1R
file_pos 1R
convert_to_units 1R
start_of_spin 1R
get_data_key 1R
get_version_number 1R
read_drec 1R
ret_codes 1H
libbase_idfs 1H
idf_data 1S

BUGS
None

EXAMPLES

Obtain one spin of data from sensor 0 in the virtual instrument CP3DRH, which is part of
the 3DR instrument, which is part of the PEACE experiment, which is part of the
CLUSTER-2 mission, which is identified with the CLUSTERII project.

#include "libbase_idfs.h"
#include "ret_codes.h"

 struct idf_data *EXP_DATA;
 register SDDAS_USHORT k;

register SDDAS_LONG swp_num;
SDDAS_ULONG data_key;
SDDAS_LONG num_sweeps, last_sweep, *tbl_oper;
SDDAS_FLOAT conv_data[1000], start_frac, stop_frac;
SDDAS_USHORT vnum, start_ele, stop_ele, start_index, stop_index;
SDDAS_SHORT status, rcode;
SDDAS_CHAR *tbls_to_apply, num_tbls;
void **data_arrays, *idf_data_ptr;

status = get_data_key ("CLUSTERII", "CLUSTER-2", "PEACE", "3DR", "CP3DRH",
 &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

read_drec_spin (1R) read_drec_spin (1R)

 151 December 28, 2012

.

.

.
 /***/
 /* Retrieve the raw units for the data. */
 /***/

 num_tbls = 0;
 tbls_to_apply = NULL;
 tbl_oper = NULL;

status = read_drec_spin (data_key, "", vnum, 0, &start_ele, &start_frac, &stop_ele,
 &stop_frac, &num_sweeps, &data_arrays);

 /**/
 /* Process the spin. */
 /**/

 if (status == ALL_OKAY || status == READ_SPIN_TERMINATE ||
 status == READ_SPIN_PARTIAL || status == READ_SPIN_DATA_GAP)
 {
 last_sweep = num_sweeps – 1;
 for (swp_num = 0; swp_num < num_sweeps; ++swp_num)
 {
 /**/
 /* Print the times for the sample being returned. */
 /**/

 idf_data_ptr = *(data_arrays + swp_num);
 EXP_DATA = (struct idf_data *) idf_data_ptr;
 printf ("\nSTART_TIME YEAR = %4d START_TIME DAY = %03d
 START TIME_MS = %ld START TIME_NS = %ld",
 EXP_DATA->byear, EXP_DATA->bday, EXP_DATA->bmilli,
 EXP_DATA->bnano);
 printf ("\nEND_TIME YEAR = %4d END_TIME DAY = %03d
 END TIME_MS = %ld END TIME_NS = %ld ",
 EXP_DATA->eyear, EXP_DATA->eday, EXP_DATA->emilli,
 EXP_DATA->enano);

 rcode = convert_to_units (data_key, "", vnum, idf_data_ptr, 0, SENSOR, 0,

 num_tbls, tbls_to_apply, tbl_oper, conv_data, 0, 0);
 if (rcode != ALL_OKAY)
 {
 printf ("\nError %d from convert_to_units.\n", rcode);
 exit (-1);
 }

read_drec_spin (1R) read_drec_spin (1R)

 152 December 28, 2012

 if (swp_num == 0)
 {
 start_index = start_ele;
 stop_index = EXP_DATA->num_sample;
 conv_data[start_ele] *= start_frac;
 }
 else if (swp_num == last_sweep)
 {
 start_index = 0;
 stop_index = stop_ele;
 conv_data[stop_ele] *= stop_frac;
 }
 else
 {
 start_index = 0;
 stop_index = EXP_DATA->num_sample;
 }

 /***/
 /* Print data values, 6 values per row, in exponential format. */
 /***/

 for (k = start_index; k < stop_index; ++k)
 {
 if (k % 6 == 0)
 printf ("\n");
 printf ("%.6f ", conv_data[k]);
 }

 printf ("\n\n");
 }
 }

read_tensor_data (1R) read_tensor_data (1R)

 153 December 28, 2012

READ_TENSOR_DATA
function - read data from a multi-dimensional IDFS data set and return the data in raw units
(telemetry level) in the specified tensor_data structure

SYNOPSIS

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT read_tensor_data (SDDAS_ULONG data_key, SDDAS_CHAR *exten,
 SDDAS_USHORT version, void *tensor_data_ptr,
 SDDAS_SHORT sen, SDDAS_CHAR fwd)

ARGUMENTS

data_key - unique value which indicates the multi-dimensional IDFS
data set of interest

exten - two character extension to be added to IDFS file names when
default files are not to be used, otherwise a null string

version - IDFS data set identification number which allows for multiple
openings of the same data set

tensor_data_ptr - pointer to the tensor_data structure that is to hold sensor data
and pertinent ancillary data for the data set of interest

sen - sensor identification number
fwd - next time sample

0 - do not advance to the next time sample
after obtaining data

1 - advance to the next time sample after
obtaining data

read_tensor_data - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for READ_TENSOR_DATA

STATUS CODE EXPLANATION OF STATUS
TENSOR_NOT_FOUND the requested data_key, exten, version combination has no memory

allocated for processing (user did not call file_open for this combination)
WRONG_HEADER_FORMAT this module should only be called for single-valued multi-dimensional

IDFS data
TENSOR_NO_FILES data and header files have not been opened
TENSOR_READ_ERROR read error on data file for multi-dimensional IDFS data
PARTIAL_READ the number of bytes read from the file being accessed did not match the

number of bytes requested. This code is returned only for the playback
scenario. The code EOF_STATUS is returned for the real-time scenario.

FILL_HEADER the header record read is a fill header, indicating that the header record has
not been received by the workstation at the time of the read from the file.
This code is returned only for the playback scenario. The code
EOF_STATUS is returned for the real-time scenario.

TENSOR_HDR_READ_ERROR read error on header file for multi-dimensional IDFS data
TENSOR_HDR_MALLOC no memory for header record information for multi-dimensional IDFS data

read_tensor_data (1R) read_tensor_data (1R)

 154 December 28, 2012

STATUS CODE EXPLANATION OF STATUS
TENSOR_HDR_REALLOC no memory for header information expansion for multi-dimensional IDFS

data (header increased in size)
TENSOR_DATA_MALLOC no memory for sensor data array in the tensor_data structure
TENSOR_DATA_REALLOC no memory for sensor data array expansion in the tensor_data structure
TENSOR_MODE_MALLOC no memory for instrument mode flags array returned in the tensor_data

structure
TENSOR_MODE_REALLOC no memory for expansion of instrument mode flags array
TENSOR_DATA_TDW_LEN only byte-oriented multi-dimensional IDFS data can be defined
UPDATE_IDF_NO_FILL a fill value must be specified for multi-dimensional IDFS data
UPDATE_IDF_BAD_PA_DEF pitch angle can not be specified for multi-dimensional IDFS data
UPDATE_IDF_BAD_POT_DEF spacecraft potential data can not be specified for multi-dimensional IDFS

data
UPDATE_IDF_BAD_SPIN_DEF start of spin data source can not be specified for multi-dimensional IDFS

data
UPDATE_IDF_BAD_PMI_DEF euler angle can not be specified for multi-dimensional IDFS data
UPDATE_IDF_BAD_BKGD_DEF background data can not be specified for multi-dimensional IDFS data
UPDATE_IDF_BAD_CP_DEF celestial position angles can not be specified for multi-dimensional IDFS

data
UPDATE_IDF_ELE_NOT_FOUND the data item being requested was not found in the VIDF file
UPDATE_IDF_MANY_BYTES the number of elements being requested is more than the number of

elements available for the selected field
UPDATE_IDF_TBL_NUM the table being requested exceeds the number of defined tables
UPDATE_IDF_CON_NUM the constant being requested exceeds the number of defined constants
UPDATE_IDF_NO_ENTRY the field being requested is not defined
HDR_FMT_TWO_MALLOC no memory for elements pertinent to multi-dimensional IDFS definition
HDR_FMT_TWO_DQUAL the size of the data quality tensor does not match the size of the multi-

dimensional IDFS data set
TENSOR_DQUAL_MALLOC no memory for data quality values returned in the tensor_data structure
TENSOR_DQUAL_REALLOC no memory for expansion of data quality values in the tensor_data

structure
CRIT_ACT_MALLOC no memory for critical action information
LESS_EULER_CONSTANT_ANGLES the number of euler angle constants defined in the VIDF file is less than

the number of euler angles defined in the VIDF file
LESS_EULER_CONSTANT_AXIS the number of euler rotation axis constants defined in the VIDF file is less

than the number of euler angles defined in the VIDF file
MORE_EULER_CONSTANT_ANGLES the number of euler angle constants defined in the VIDF file is more than

the number of euler angles defined in the VIDF file
MORE_EULER_CONSTANT_AXIS the number of euler rotation axis constants defined in the VIDF file is

more than the number of euler angles defined in the VIDF file
WRONG_DATA_STRUCTURE incompatibility between IDFS data set and IDFS data structure used to

hold the data being returned
TENSOR_NO_SENSOR no data found for the requested sensor
TENSOR_EOF_NO_SENSOR no multi-dimensional IDFS data found for the requested sensor – eof on

forward (real-time scenario only)
TENSOR_EOF_SENSOR multi-dimensional IDFS data found for the requested sensor – eof on

forward (real-time scenario only)
NEXT_FILE_STATUS the end of the current data file being processed has been reached
LOS_STATUS loss of signal encountered
EOF_STATUS eof encountered on file being accessed (real-time scenario only)
ALL_OKAY single-valued multi-dimensional IDFS data for requested sensor is

returned

read_tensor_data (1R) read_tensor_data (1R)

 155 December 28, 2012

DESCRIPTION

Read_tensor_data is the multi-dimensional IDFS data read routine used to retrieve single-
valued tensor data for a single sensor. The sensor is indicated through the sensor number
(sen). The multi-dimensional IDFS data set of interest is referenced through the key value
data_key which can be created using the get_data_key module. The routine returns not
only the single-valued multi-dimensional IDFS data for the sensor but also most of the
pertinent ancillary data concerning the state of the virtual instrument including time and
instrument status (mode) values where applicable. For the time being, multi-dimensional
IDFS data can not be dynamically converted to any other physical unit; therefore, the data
must be stored in the physical unit desired when the data set is created. However, the
read_tensor_data module will return two sets of data within the tensor_data structure.
One set represents the raw integer values that are stored within the data record and one set
represents the floating point values that result when transferring the raw integer values into
the data type defined by d_type in the VIDF file for the IDFS data set being processed.

The returned data is placed in the tensor_data structure that is referenced by the argument
tensor_data_ptr. The argument tensor_data_ptr is a pointer to the structure that is to
hold all data pertinent to the data set being processed. The structure is created and the
address to this structure is returned when a call to the create_tensor_data_structure
routine is made. The user also has the option of calling the module create_data_structure,
which determines what type of data structure is needed for the IDFS data set of interest. In
most cases, one data structure is sufficient to process any number of distinct single-valued
multi-dimensional IDFS data sets. However, if more than one structure is needed, the user
may call the create_tensor_data_structure routine N times to create N instances of the
tensor_data structure. The user must keep track of which pointer to send to the IDFS
routines that utilize this structure. The contents of this structure is described in section 1S
of the IDFS Programmers Manual.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable

read_tensor_data (1R) read_tensor_data (1R)

 156 December 28, 2012

USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

After the data has been read, the current data pointer will be either be advanced to the next
set of data values or remain at the current set of data values, depending upon the value of
the variable fwd. By keeping the pointer at the current set of data values, repeated calls
using the same virtual instrument but different sensors can be made, ensuring that all of the
data returned was taken at the same time. Since the data is placed into the data arrays
before the current data pointer is advanced, the user should check the status of the element
filled_data within the tensor_data structure if any status code other than ALL_OKAY is
returned. This flag value will indicate if the data arrays have been filled and this data
should be processed before further action is taken in accordance with the status code
returned.

There are two sets of time values returned by the read_tensor_data routine. Within the
tensor_data structure, there are the elements byear, bday, bmilli, bnano, eyear, eday,
emilli and enano. These time elements are associated with the data for the requested
sensor. The instrument status (mode) values are not sensor-specific, that is, they pertain to
all sensors within the data record being processed. Therefore, the time span encompassed
by the instrument status values is specified in the elements mode_byear, mode_bday,
mode_bmilli, mode_bnano, mode_eyear, mode_eday, mode_emilli and mode_enano
within the tensor_data structure.

ERRORS
All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

file_open 1R
get_data_key 1R
get_version_number 1R
create_data_structure 1R
create_tensor_data_structure 1R
reset_experiment_info 1R
ret_codes 1H
libbase_idfs 1H
tensor_data 1S

BUGS
None

read_tensor_data (1R) read_tensor_data (1R)

 157 December 28, 2012

EXAMPLES

Obtain multi-dimensional IDFS data for sensor 0 from the virtual instrument NPD1BM16,
which is part of the NPD instrument, which is part of the ASPERA-3 experiment, which is
part of the Mars_Express mission, which is identified with the MARS project. The pointer
is moved to the next time sample in the data array after the data is obtained. The data is
returned in the tensor_data structure referenced by the pointer tensor_data_ptr.

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_SHORT status;
void *tensor_data_ptr;
status = get_data_key ("MARS", "Mars_Express", "ASPERA-3", "NPD", "NPD1BM16",

 &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

status = create_tensor_data_structure (&tensor_data_ptr);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by create_tensor_data_structure routine.\n", status);
 exit (-1);
 }
.
.
.
status = read_tensor_data (data_key, "", vnum, tensor_data_ptr, 0, 1);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by read_tensor_data routine.\n", status);
 exit (-1);
 }

read_tensor_data (1R) read_tensor_data (1R)

 158 December 28, 2012

read_idf (1R) read_idf (1R)

 159 December 28, 2012

READ_IDF
function – retrieve information from the VIDF file for the specified IDFS data set

DESCRIPTION
This module has been moved into a separately maintained library. The user is referred to
the webpage http://cluster/libVIDF.html for an explanation of the interface to this module. The
IDFS data access software makes use of both the read_idf and ReadVIDF modules. The
examples provided at the beginning of this manual make use of only the read_idf module.

http://cluster/libVIDF.html

read_idf (1R) read_idf (1R)

 160 December 28, 2012

reset_experiment_info (1R) reset_experiment_info (1R)

 161 December 28, 2012

RESET_EXPERIMENT_INFO
function - closes the current data files and opens the next set of data files to be processed

SYNOPSIS

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT reset_experiment_info (SDDAS_ULONG data_key,
 SDDAS_CHAR *exten, SDDAS_USHORT version,
 SDDAS_SHORT btime_yr, SDDAS_SHORT btime_day,
 SDDAS_LONG btime_sec, SDDAS_LONG btime_nano,
 SDDAS_SHORT etime_yr, SDDAS_SHORT etime_day,
 SDDAS_LONG etime_sec, SDDAS_LONG etime_nano)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file

names when default files are not to be used, otherwise
a null string

version - IDFS data set identification number which allows for
multiple openings of the same data set

btime_yr - beginning year for data being requested
btime_day - beginning day of year for data being requested
btime_sec - beginning time of day in seconds for data being

requested
btime_nano - beginning time of day residual in nanoseconds
etime_yr - ending year for data being requested
etime_day - ending day of year for data being requested
etime_sec - ending time of day in seconds for data being requested
etime_nano - ending time of day residual in nanoseconds
reset_experiment_info - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for RESET_EXPERIMENT_INFO

STATUS CODE EXPLANATION OF STATUS

RESET_NOT_FOUND the requested data_key, exten, version combination has no memory allocated
for processing (user did not call file_open for this combination)

 Error codes returned by file_open ()
ALL_OKAY all data files opened

In addition to the status codes listed above, other error/status codes may be returned in the case of a
database request. The user is referred to the webpage http://cluster/libdbSQL.html for an explanation of
the interface to the database which is used by the IDFS data access software. The write-up for the
modules dbIDFSGetRealTimeFile and dbIDFSGetFile are pertinent to the reset_experiment_info
routine.

http://cluster/libdbSQL.html

reset_experiment_info (1R) reset_experiment_info (1R)

 162 December 28, 2012

DESCRIPTION
Reset_experiment_info is the IDFS routine that may be used when the end of the current
data file has been reached and the return code from the read_drec, read_tensor_data,
start_image, fill_data, fill_discontinuous_data, fill_mode_data, sweep_data,
sweep_discontinuous_data, sweep_mode_data or file_pos routine indicates that more
data files need to be processed (NEXT_FILE_STATUS). The data set of interest is
referenced through the key value data_key which can be created using the get_data_key
module. This routine closes the currently opened files for the requested data set
(data_key), file name extension (exten) and IDFS data set identification number (version),
memory arrays that were allocated based upon VIDF information are freed and the next set
of data files are opened. If the data set of interest contains pitch angle information, the
IDFS data access software will automatically take care of data file management for the pitch
angle IDFS data set. The IDFS data access software performs the same tasks when the data
set of interest contains spacecraft potential information, background information and / or
start of spin information.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

The beginning time that is passed to this routine is dependent upon whether playback or
real-time processing is desired. If real-time data files are being utilized, the value for
btime_sec should be set to -1 so that the file positioning routine file_pos will position the
file pointer at the beginning of the new real-time data file. If playback data files are being
utilized, the routine next_file_start_time should be called to retrieve the start time that will
trigger the retrieval of the next data file to be processed. The time values that are passed
into this routine are used to make an internal call to the file_open routine in order to retrieve
the next set of data files. It is imperative that a call to the file_pos routine be made
immediately after a successful return from the reset_experiment_info module in order for
the IDFS software to process the next IDFS data set correctly.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null

reset_experiment_info (1R) reset_experiment_info (1R)

 163 December 28, 2012

string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

ERRORS

All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

file_open 1R
file_pos 1R
read_drec 1R
read_tensor_data 1R
start_image 1R
fill_data 2R
fill_mode_data 2R
fill_discontinuous_data 2R
sweep_data 2R
sweep_mode_data 2R
sweep_discontinuous_data 2R
next_file_start_time 1R
get_data_key 1R
get_version_number 1R
ret_codes 1H
libbase_idfs 1H
idf_data 1S
tensor_data 1S

BUGS

None

EXAMPLES

The end of the current playback data file has been reached and more data exists for the
virtual instrument RTLA, which is part of the RETE instrument/experiment, which is part
of the TSS-1 mission, which is identified with the TSS project. Retrieve the next set of data
files. External variables are utilized to illustrate that the user-requested end time is set
before this code is executed.

#include "libbase_idfs.h"
#include "ret_codes.h"

extern SDDAS_SHORT etime_yr, etime_day;
extern SDDAS_LONG etime_sec, etime_nano;

reset_experiment_info (1R) reset_experiment_info (1R)

 164 December 28, 2012

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_LONG btime_sec, btime_nano;
SDDAS_SHORT status, btime_yr, btime_day;

status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

status = next_file_start_time (data_key, "", vnum, 0, &btime_yr, &btime_day,
 &btime_sec, &btime_nano);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by next_file_start_time routine.\n", status);
 exit (-1);
 }

status = reset_experiment_info (data_key, "", vnum, btime_yr, btime_day,
 btime_sec, btime_nano, etime_yr, etime_day,
 etime_sec, etime_nano);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by reset_experiment_info routine.\n", status);
 exit (-1);
 }

select_sensor (1R) select_sensor (1R)

 165 December 28, 2012

SELECT_SENSOR
function - indicate which sensors are to be processed for the data set specified

SYNOPSIS

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT select_sensor (SDDAS_ULONG data_key, SDDAS_CHAR *exten,
 SDDAS_USHORT version, SDDAS_SHORT sensor)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file names when

default files are not to be used, otherwise a null string
version - IDFS data set identification number which allows for multiple

openings of the same data set
sensor - sensor identification number
select_sensor - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for SELECT_SENSOR

STATUS CODE EXPLANATION OF STATUS

SEL_SEN_NOT_FOUND the requested data_key, exten, version combination has no memory allocated
for processing (user did not call file_open for this combination)

ALL_OKAY routine terminated successfully

DESCRIPTION

Select_sensor is the IDFS sensor selection routine. The data set of interest is referenced
through the key value data_key which can be created using the get_data_key module.
This routine does not have to be utilized by the programmer since the routine file_open sets
the internal flags to indicate that all sensors associated with the data set are to be processed
and memory to hold information concerning each sensor is to be allocated by the routine
file_pos. However, in order to conserve space and to avoid unnecessary processing of
sensors which are not going be utilized by the programmer, this routine may be called once
for each desired sensor. When this routine is called, the internal flags are reset such that
only the requested sensors will be processed and have space allocated. This routine must
be called before the routine file_pos if this routine is to be utilized properly.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a

select_sensor (1R) select_sensor (1R)

 166 December 28, 2012

single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

Within the IDFS paradigm, an instrument may be classified as a vector instrument or as a
scalar instrument when dealing with data that is not stored in multi-dimensional IDFS
format. A vector instrument is an instrument whose sensors represent multi-value data sets
as opposed to a scalar instrument whose sensors represent a set of singular data values. If
the data set to be processed is a vector instrument, the user should not call this routine if the
center_and_band_values routine is to be utilized. If this routine is called, erroneous center
sweep and/or band width values may be computed.

ERRORS

All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

file_pos 1R
file_open 1R
get_data_key 1R
get_version_number 1R
center_and_band_values 2R
ret_codes 1H
libbase_idfs 1H

BUGS

None

EXAMPLES

The RTLA virtual instrument, which is part of the RETE instrument/experiment, has 5
sensors associated with it, referenced as sensors 0, 1, 2, 3, and 4. The RETE
instrument/experiment is part of the TSS-1 mission, which is identified with the TSS
project. Select sensors 0 and 3 to be the only two sensors to be processed and to have space
allocated.

select_sensor (1R) select_sensor (1R)

 167 December 28, 2012

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_SHORT status;

status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

status = select_sensor (data_key, "", vnum, 0);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by select_sensor routine.\n", status);
 exit (-1);
 }

status = select_sensor (data_key, "", vnum, 3);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by select_sensor routine.\n", status);
 exit (-1);
 }

select_sensor (1R) select_sensor (1R)

 168 December 28, 2012

start_image (1R) start_image (1R)

 169 December 28, 2012

START_IMAGE
function - positions the file pointers at the beginning of an image

SYNOPSIS

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT start_image (SDDAS_ULONG data_key, SDDAS_CHAR *exten,
 SDDAS_USHORT version, void *idf_data_ptr)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file names when

default files are not to be used, otherwise a null string
version - IDFS data set identification number which allows for multiple

openings of the same data set
idf_data_ptr - pointer to the idf_data structure that is to hold sensor

data and pertinent ancillary data for the data set of interest
start_image - routine status (see TABLE 1)

TABLE 1. Status Code Returned for START_IMAGE

STATUS CODE EXPLANATION OF STATUS

IMAGE_NOT_FOUND the requested data_key, exten, version combination has no memory allocated for
processing (user did not call file_open for this combination)

IMAGE_READ_ERROR read error on data or header file
IMAGE_HDR_MALLOC no memory for header record information
IMAGE_HDR_REALLOC no memory for header information expansion (header increased in size)
WRONG_DATA_STRUCTURE incompatibility between IDFS data set and IDFS data structure used to hold the

data being returned
 Error codes returned by read_drec ()
ALL_OKAY routine terminated successfully

DESCRIPTION

Start_image is the IDFS routine that positions the file descriptors at the start of an image.
The data set of interest is referenced through the key value data_key which can be created
using the get_data_key module. In order to store an image within the IDFS paradigm, at
least one calibration set must be defined, calibration set 0, to hold the scan line number and
this is a single quantity (one value, not an array of values). Second, the scan line value must
increase from sensor set to sensor set within a single data record. This routine uses the
currently opened files for the requested data set and sets the current data pointer to the data
sample or sweep whose scan line calibration value is set to zero. This routine must be
called AFTER a call to the file_pos routine has been made since the file_pos routine sets
the data pointer to the data sample or sweep whose beginning time is closest to that
requested by the user. The start_image routine assumes that the file_pos routine has been
already been called. Data positioning is performed only once for each unique parameter set.
If additional calls are made to this routine with the same parameter set, the module simply

start_image (1R) start_image (1R)

 170 December 28, 2012

returns the ALL_OKAY status code, with the exception being after a call to the module
reset_experiment_info, which closes the existing IDFS data set and opens the next IDFS
data set to be processed.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

The parameter idf_data_ptr is a pointer to the structure that is to hold all data pertinent to
the data set being processed. The structure is created and the address to this structure is
returned when a call to the create_idf_data_structure routine is made. The user also has
the option of calling the module create_data_structure, which determines what type of
data structure is needed for the IDFS data set of interest. In most cases, one data structure is
sufficient to process any number of distinct data sets. However, if more than one structure
is needed, the user may call the create_idf_data_structure routine N times to create N
instances of the idf_data structure. The user must keep track of which pointer to send to the
IDFS routines that utilize this structure.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

ERRORS
All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

file_open 1R
file_pos 1R
read_drec 1R
reset_experiment_info 1R

start_image (1R) start_image (1R)

 171 December 28, 2012

get_data_key 1R
get_version_number 1R
create_data_structure 1R
create_idf_data_structure 1R
ret_codes 1H
libbase_idfs 1H

BUGS

None

EXAMPLES
Position the default IDFS data files associated with the virtual instrument SAIA, which is
part of the SAI instrument/experiment, at the beginning of the data file and at the start of the
image. The SAI instrument/experiment is part of the DE-1 mission, which is identified with
the DE (Dynamics Explorer) project.

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_SHORT status;
void *idf_data_ptr;

status = get_data_key ("DE", "DE-1", "SAI", "SAI", "SAIA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

status = create_idf_data_structure (&idf_data_ptr);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by create_idf_data_structure routine.\n", status);
 exit (-1);
 }

status = file_pos (data_key, "", vnum, idf_data_ptr, -1, -1, -1, 0, -1, -1, -1, 0);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by file_pos routine.\n", status);
 exit (-1);
 }

start_image (1R) start_image (1R)

 172 December 28, 2012

status = start_image (data_key, "", vnum, idf_data_ptr);

if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by start_image routine.\n", status);
 exit (-1);
 }

start_of_spin (1R) start_of_spin (1R)

 173 December 28, 2012

START_OF_SPIN
function - positions the file pointers at the beginning of a spin

SYNOPSIS

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT start_of_spin (SDDAS_ULONG data_key, SDDAS_CHAR *exten,
 SDDAS_USHORT version, SDDAS_SHORT ctrl_sen,
 SDDAS_SHORT etime_yr, SDDAS_SHORT etime_day,
 SDDAS_LONG etime_sec, SDDAS_LONG etime_nano)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file names when

default files are not to be used, otherwise a null string
version - IDFS data set identification number which allows for multiple

openings of the same data set
 ctrl_sen - sensor which serves as the controller for timing relating to

full spins
etime_yr - ending year for data being requested
etime_day - ending day of year for data being requested
etime_sec - ending time of day in seconds for data being requested
etime_nano - ending time of day residual in nanoseconds
start_of_spin - routine status (see TABLE 1)

TABLE 1. Status Code Returned for START_OF_SPIN

STATUS CODE EXPLANATION OF STATUS

START_SPIN_NOT_FOUND the requested data_key, exten, version combination has no memory allocated for
processing (user did not call file_open for this combination)

START_SPIN_NO_POS user did not call file_pos for this combination before calling this module
WRONG_HEADER_FORMAT multi-dimensional IDFS data storage is not supported by this module
START_SPIN_NO_SPIN the requested data set does not spin
START_SPIN_MALLOC no memory for structures which hold start of spin information for each sensor
START_SPIN_ALL_MALLOC no memory for array of pointers to the idf_data structures that are allocated to hold

the data for each sweep within the spin
START_SPIN_ETIME user-requested end time was reached and the start of spin was not found
START_SPIN_TIME_MALLOC no memory for time of sample values for spin determination
WRONG_DATA_STRUCTURE incompatibility between IDFS data set and IDFS data structure used to hold the

data being returned
 Error codes returned by create_idf_data_structure ()
 Error codes returned by file_open ()
 Error codes returned by file_pos ()
 Error codes returned by read_drec ()
 Error codes returned by next_file_start_time ()
 Error codes returned by reset_experiment_info ()
ALL_OKAY routine terminated successfully

start_of_spin (1R) start_of_spin (1R)

 174 December 28, 2012

DESCRIPTION
Start_of_spin is the IDFS routine that positions the file descriptors at the start of a spin.
The data set of interest is referenced through the key value data_key which can be created
using the get_data_key module. The start of spin can be determined in one of two ways:
(1) use the azimuthal angle values (default method) or (2) use the spin periods defined by
the IDFS data source that was specified as the start of spin source in the VIDF file for the
data set of interest. If there was a problem encountered for the start of spin IDFS source on
the initial call to the file_open module for the data set of interest, the start of spin method
will be reverted back to the angular method. Both methods require that the start_of_spin
module be called AFTER a call to the file_pos routine has been made since the file_pos
routine sets the data pointer to the data sample or sweep whose beginning time is closest to
that requested by the user, including any start of spin IDFS source that may be defined.

For the angular method, this routine uses the currently opened files for the requested data
set and sets the current data pointer to the data sample or element within the sweep whose
azimuthal angles indicate the start of a new spin has been reached (angle = 0.0). The start
of spin is found for each individual IDFS sensor that is to be processed for the data set
specified (refer to the select_sensor routine). This is necessary since the computation for
the azimuthal angles is based upon time and each IDFS sensor could potentially start at a
different time within the same sweep being retrieved from the IDFS data record.

For the start of spin source definition method, this routine uses the currently opened files for
the requested data set and sets the current data pointer to the data sample or element within
the sweep whose time period lies within the spin period that is closest to the user requested
start time. The start of spin is found for each individual IDFS sensor that is to be processed
for the data set specified (refer to the select_sensor routine). This is necessary since each
IDFS sensor could potentially start at a different time within the same sweep being retrieved
from the IDFS data record.

In preparation for the usage of spin-averaged data which is returned by the modules defined
in section 2R, the parameter ctrl_sen is utilized. Spin-averaged data refers to data that is
averaged over a complete spin. For the angular method, the parameter ctrl_sen defines the
sensor that will dictate the time interval for each spin that is processed by the spin-
averaging software. This is necessary since each IDFS sensor could potentially start at a
different time within the same sweep being retrieved from the IDFS data record; therefore,
one sensor has to control the time period that is reflective of each spin. For the start of spin
source definition method, the parameter ctrl_sen is ignored; instead, the sensor that is
defined in the StartOfSpin structure within the VIDF file is used. If the modules defined in
section 2R are not going to be utilized, the user is advised to set this parameter to zero.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number

start_of_spin (1R) start_of_spin (1R)

 175 December 28, 2012

instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

ERRORS

All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

file_open 1R
file_pos 1R
read_drec 1R
select_sensor 1R
get_data_key 1R
get_version_number 1R
create_idf_data_structure 1R
next_file_start_time 1R
reset_experiment_info 1R
spin_data 2R
spin_data_pixel 2R
ret_codes 1H
libbase_idfs 1H

BUGS

None

EXAMPLES
Position the default IDFS data files associated with the virtual instrument RTLA, which is
part of the RETE instrument/experiment, which is part of the TSS-1 mission, which is
identified with the TSS project, at the start of the spin that is closest to the user-requested
start time specified in the prior call to file_open () and file_pos () modules.

start_of_spin (1R) start_of_spin (1R)

 176 December 28, 2012

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_LONG etime_sec, etime_nsec;
SDDAS_USHORT vnum;
SDDAS_SHORT status, etime_yr, etime_day;
void *idf_data_ptr;

status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

etime_yr = 1992;
etime_day = 217;
etime_sec = 32342;
etime_nsec = 0;
.
.
.
status = start_of_spin (data_key, "", vnum, 0, etime_yr, etime_day, etime_sec,

 etime_nsec);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by start_of_spin routine.\n", status);
 exit (-1);
 }

turn_off_pitch_angle_computations (1R) turn_off_pitch_angle_computations (1R)

 177 December 28, 2012

TURN_OFF_PITCH_ANGLE_COMPUTATIONS
function – disables the computation of pitch angles for the specified IDFS data set

SYNOPSIS

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT turn_off_pitch_angle_computations (SDDAS_ULONG data_key,
 SDDAS_CHAR *exten, SDDAS_USHORT version)

ARGUMENTS

data_key - unique value which indicates the data set of
 interest

exten - two character extension to be added to IDFS
file names when default files are not to be used,
otherwise a null string

version - IDFS data set identification number which
 allows for multiple openings of the same data set

turn_off_pitch_angle_computations - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for TURN_OFF_PITCH_ANGLE_COMPUTATIONS

STATUS CODE EXPLANATION OF STATUS
TURN_OFF_PA_NOT_FOUND the requested data_key, exten, version combination has no memory

allocated for processing (user did not call file_open for this combination)
ALL_OKAY routine terminated successfully

DESCRIPTION

Turn_off_pitch_angle_computations is the routine that disables the computation of the
pitch angle data for the data set of interest. This routine was developed in order to speed up
the read_drec routine since there are times when pitch angle data is not needed by the
application accessing the IDFS data. The default scenario for the IDFS data access software
is to compute and return pitch angle data, if available, for the data set of interest. If the data
set of interest does not return pitch angle data, this routine has no effect. The data set of
interest is referenced through the key value data_key which can be created using the
get_data_key module. If this module is utilized, it must be called after the file_open
routine has been called and before the file_pos routine is called.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a

turn_off_pitch_angle_computations (1R) turn_off_pitch_angle_computations (1R)

 178 December 28, 2012

single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

ERRORS

All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

file_open 1R
file_pos 1R
read_drec 1R
get_data_key 1R
get_version_number 1R
ret_codes 1H
libbase_idfs 1H

BUGS

None

EXAMPLES

Turn off the pitch angle computations for the virtual instrument CP3DRH, which is part of
the 3DR instrument, which is part of the PEACE experiment, which is part of the
CLUSTER-2 mission, which is identified with the CLUSTERII project.

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_SHORT status;

turn_off_pitch_angle_computations (1R) turn_off_pitch_angle_computations (1R)

 179 December 28, 2012

status = get_data_key ("CLUSTERII", "CLUSTER-2", "PEACE", "3DR", "CP3DRH",
 &data_key);

if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

status = file_open (data_key, "", vnum, -1, -1, -1, 0, -1, -1, -1, 0, 0);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by file_open routine.\n", status);
 exit (-1);
 }

status = turn_off_pitch_angle_computations (data_key, "", vnum);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by turn_off_pitch_angle_computations routine.\n", status);
 exit (-1);
 }

turn_off_pitch_angle_computations (1R) turn_off_pitch_angle_computations (1R)

 180 December 28, 2012

turn_on_celestial_position_computations (1R) turn_celestial_position_computations (1R)

 181 December 28, 2012

TURN_ON_CELESTIAL_POSITION_COMPUTATIONS
function – enables the computation of celestial position angles for the specified IDFS data
set

SYNOPSIS

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT turn_on_celestial_position_computations (SDDAS_ULONG data_key,
 SDDAS_CHAR *exten, SDDAS_USHORT version)

ARGUMENTS

data_key - unique value which indicates the data set of
 interest

exten - two character extension to be added to IDFS
file names when default files are not to be used,
otherwise a null string

version - IDFS data set identification number which
 allows for multiple openings of the same data set

turn_on_celestial_position_computations - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for
TURN_ON_CELESTIAL_POSITION_COMPUTATIONS

STATUS CODE EXPLANATION OF STATUS

TURN_ON_CP_NOT_FOUND the requested data_key, exten, version combination has no memory
allocated for processing (user did not call file_open for this combination)

ALL_OKAY routine terminated successfully

DESCRIPTION

Turn_on_celestial_position_computations is the routine that enables the computation and
return of the celestial position angle data for the data set of interest. This routine was
developed in order to control the ancillary data computations performed by the read_drec
routine since there are few times when celestial position angle data is needed by the
application accessing the IDFS data. The default scenario for the IDFS data access software
is to suppress the computation of celestial position angle data, if available, for the data set of
interest. The data set of interest is referenced through the key value data_key which can be
created using the get_data_key module. If this module is utilized, it must be called after the
file_open routine has been called and before the file_pos routine is called.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number

turn_on_celestial_position_computations (1R) turn_celestial_position_computations (1R)

 182 December 28, 2012

instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

ERRORS

All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

file_open 1R
file_pos 1R
read_drec 1R
get_data_key 1R
get_version_number 1R
ret_codes 1H
libbase_idfs 1H

BUGS

None

EXAMPLES

Turn on the celestial position angle computations for the virtual instrument CP3DRH,
which is part of the 3DR instrument, which is part of the PEACE experiment, which is part
of the CLUSTER-2 mission, which is identified with the CLUSTERII project.

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_SHORT status;

turn_on_celestial_position_computations (1R) turn_celestial_position_computations (1R)

 183 December 28, 2012

status = get_data_key ("CLUSTERII", "CLUSTER-2", "PEACE", "3DR", "CP3DRH",
 &data_key);

if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

status = file_open (data_key, "", vnum, -1, -1, -1, 0, -1, -1, -1, 0, 0);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by file_open routine.\n", status);
 exit (-1);
 }

status = turn_on_celestial_position_computations (data_key, "", vnum);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by turn_on_celestial_position_computations routine.\n",
 status);
 exit (-1);
 }

turn_on_celestial_position_computations (1R) turn_celestial_position_computations (1R)

 184 December 28, 2012

turn_on_euler_angle_computations (1R) turn_on_euler_angle_computations (1R)

 185 December 28, 2012

TURN_ON_EULER_ANGLE_COMPUTATIONS
function – enables the computation of euler angles for the specified IDFS data set

SYNOPSIS

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT turn_on_euler_angle_computations (SDDAS_ULONG data_key,
 SDDAS_CHAR *exten, SDDAS_USHORT version)

ARGUMENTS

data_key - unique value which indicates the data set of
 interest

exten - two character extension to be added to IDFS
file names when default files are not to be used,
otherwise a null string

version - IDFS data set identification number which
 allows for multiple openings of the same data set

turn_on_euler_angle_computations - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for TURN_ON_EULER_ANGLE_COMPUTATIONS

STATUS CODE EXPLANATION OF STATUS
TURN_ON_EA_NOT_FOUND the requested data_key, exten, version combination has no memory

allocated for processing (user did not call file_open for this combination)
ALL_OKAY routine terminated successfully

DESCRIPTION

Turn_on_euler_angle_computations is the routine that enables the computation and
return of the euler angle data for the data set of interest. This routine was developed in
order to control the ancillary data computations performed by the read_drec routine since
there are few times when euler angle data is needed by the application accessing the IDFS
data. The default scenario for the IDFS data access software is to suppress the computation
of euler angle data, if available, for the data set of interest. The data set of interest is
referenced through the key value data_key which can be created using the get_data_key
module. If this module is utilized, it must be called after the file_open routine has been
called and before the file_pos routine is called.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a

turn_on_euler_angle_computations (1R) turn_on_euler_angle_computations (1R)

 186 December 28, 2012

single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

ERRORS

All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

file_open 1R
file_pos 1R
read_drec 1R
get_data_key 1R
get_version_number 1R
ret_codes 1H
libbase_idfs 1H

BUGS

None

EXAMPLES

Turn on the euler angle computations for the virtual instrument CP3DRH, which is part of
the 3DR instrument, which is part of the PEACE experiment, which is part of the
CLUSTER-2 mission, which is identified with the CLUSTERII project.

#include "libbase_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_SHORT status;

turn_on_euler_angle_computations (1R) turn_on_euler_angle_computations (1R)

 187 December 28, 2012

status = get_data_key ("CLUSTERII", "CLUSTER-2", "PEACE", "3DR", "CP3DRH",
 &data_key);

if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

status = file_open (data_key, "", vnum, -1, -1, -1, 0, -1, -1, -1, 0, 0);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by file_open routine.\n", status);
 exit (-1);
 }

status = turn_on_euler_angle_computations (data_key, "", vnum);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by turn_on_euler_angle_computations routine.\n", status);
 exit (-1);
 }

turn_on_euler_angle_computations (1R) turn_on_euler_angle_computations (1R)

 188 December 28, 2012

valid_idf_data_structure (1R) valid_idf_data_structure (1R)

 189 December 28, 2012

VALID_IDF_DATA_STRUCTURE
function – indicates if the specified idf_data structure is an active data structure

SYNOPSIS

#include "libbase_idfs.h"

SDDAS_BOOL valid_idf_data_structure (void *idf_data_ptr)

ARGUMENTS

idf_data_ptr - pointer to the idf_data structure that is to hold sensor
data and pertinent ancillary data for the data set of interest

DESCRIPTION

Valid_idf_data_structure is the IDFS routine that can be called to verify that the address
of the data structure idf_data is a valid and active address. In other words, the memory
associated with the address has not been freed. While it is not usually necessary to utilize
this module when processing IDFS data, there are some cases where it was necessary when
SCF data is being processed. The module will return a Boolean value to indicate whether
the address for the idf_data structure is “active” at this time (sTrue) or “inactive” at this
time (sFalse).

ERRORS
This routine returns no error codes.

SEE ALSO

create_data_structure 1R
create_idf_data_structure 1R
idf_data 1S

BUGS
None

EXAMPLES
Determine if the memory address for the idf_data structure is an active memory location.
If it is not, allocate a new idf_data structure for usage. This code segment assumes that the
module create_idf_data_structure or create_data_structure has been previously called.

#include "libbase_idfs.h"

SDDAS_SHORT status;
SDDAS_BOOL valid_address;

 void *idf_data_ptr;

 valid_address = valid_idf_data_structure (idf_data_ptr);

valid_idf_data_structure (1R) valid_idf_data_structure (1R)

 190 December 28, 2012

if (!valid_address)
 {

 status = create_idf_data_structure (&idf_data_ptr);
 if (status != ALL_OKAY)

 {
 printf ("\n Error %d returned by create_idf_data_structure routine.\n", status);
 exit (-1);
 }

 }

valid_tensor_data_structure (1R) valid_tensor_data_structure (1R)

 191 December 28, 2012

VALID_TENSOR_DATA_STRUCTURE
function – indicates if the specified tensor_data structure is an active data structure

SYNOPSIS

#include "libbase_idfs.h"

SDDAS_BOOL valid_tensor_data_structure (void *tensor_data_ptr)

ARGUMENTS

tensor_data_ptr - pointer to the tensor_data structure that is to hold sensor
data and pertinent ancillary data for the data set of interest

DESCRIPTION

Valid_tensor_data_structure is the IDFS routine that can be called to verify that the
address of the data structure tensor_data is a valid and active address. In other words, the
memory associated with the address has not been freed. While it is not usually necessary to
utilize this module when processing IDFS data, there are some cases where it was necessary
when SCF data is being processed. The module will return a Boolean value to indicate
whether the address for the tensor_data structure is “active” at this time (sTrue) or
“inactive” at this time (sFalse).

ERRORS
This routine returns no error codes.

SEE ALSO

create_data_structure 1R
create_tensor_data_structure 1R
tensor_data 1S

BUGS
None

EXAMPLES
Determine if the memory address for the tensor_data structure is an active memory
location. If it is not, allocate a new tensor_data structure for usage. This code segment
assumes that the module create_tensor_data_structure or create_data_structure has
been previously called.

#include "libbase_idfs.h"

SDDAS_SHORT status;
SDDAS_BOOL valid_address;

 void *tensor_data_ptr;

 valid_address = valid_tensor_data_structure (tensor_data_ptr);

valid_tensor_data_structure (1R) valid_tensor_data_structure (1R)

 192 December 28, 2012

 if (!valid_address)
 {

 status = create_tensor_data_structure (&tensor_data_ptr);
 if (status != ALL_OKAY)

 {
 printf ("\n Error %d returned by create_tensor_data_structure routine.\n", status);
 exit (-1);
 }

 }

buffer_bin_fill (2R) buffer_bin_fill (2R)

 193 December 28, 2012

BUFFER_BIN_FILL
function - fills in the missing bin elements for the data buffer being referenced

SYNOPSIS

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT buffer_bin_fill (SDDAS_ULONG data_key, SDDAS_CHAR *exten,
 SDDAS_USHORT version, SDDAS_FLOAT *data_ptr,
 SDDAS_CHAR *bin_stat, SDDAS_SHORT block_size,
 SDDAS_LONG need_filled, SDDAS_CHAR bin_project)

ARGUMENTS
data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file names when

default files are not to be used, otherwise a null string
version - IDFS data set identification number which allows for multiple

openings of the same data set
data_ptr - pointer to the data buffer being processed
bin_stat - pointer to status flags which are associated with each data

bin returned
 0 - no data has been placed into the data bin being
 processed
 1 - data has been placed into the data bin being
 processed

block_size - the number of data values returned in a single data buffer
need_filled - the number of filled bins needed in order to fill in the missing

data bins
bin_project - flag indicating if the data is to be projected into empty bins

beyond the first or last data bin which contains data
 0 - do not project the data
 1 - project the data

buffer_bin_fill - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for BUFFER_BIN_FILL

STATUS CODE EXPLANATION OF STATUS
BUF_BIN_NOT_FOUND the requested data_key, exten, version combination has no memory allocated for

processing (user did not call file_open for this combination)
BUF_BIN_MALLOC no memory for temporary internal array
ALL_OKAY routine terminated successfully

DESCRIPTION

Buffer_bin_fill is the IDFS routine which fills any missing bins in the data buffers that are
returned by the IDFS routines that return time-averaged data (fill_data and
fill_discontinuous_data), sample-averaged data (sweep_data and

buffer_bin_fill (2R) buffer_bin_fill (2R)

 194 December 28, 2012

sweep_discontinuous_data) or spin-averaged data (spin_data and spin_data_pixel). The
user should process only those buffers that are flagged with the status value
BUFFER_READY. The data set of interest is referenced through the key value data_key
which can be created using the get_data_key module. This module can not be used in
conjunction with the fill_mode_data and sweep_mode_data modules since this module is
concerned with sensor-specific data.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

The empty data bins will be filled in according to the method selected in the call to the
set_bin_info module, with the exception of a least squares fit. The least squares fit method,
if selected, is replaced by a constant column row approach, with a minimum of 3 data points
needed before the fill in can be accomplished. This replacement is necessary since the least
squares fit method is valid for 2-D fits only and this routine works with 1-D data. If the
user selected NO_BIN_FILL, the data bins are left as is, with any unfilled bins left unfilled.
If the user selected any other fill method, that fill method is used to fill in the missing data
bins. If the user is collapsing the data over any data dimension, there is no need to call this
module. The missing data bins will be handled by the call to the collapse_dimensions
module.

ERRORS

All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

buffer_bin_fill (2R) buffer_bin_fill (2R)

 195 December 28, 2012

SEE ALSO
file_open 1R
fill_data 2R
fill_discontinuous_data 2R
sweep_data 2R
sweep_discontinuous_data 2R
spin_data 2R
spin_data_pixel 2R
collapse_dimensions 2R
set_bin_info 2R
get_data_key 1R
get_version_number 1R
ret_codes 1H
libtrec_idfs 2H

BUGS

None

EXAMPLES

Assume that the fill_data module has been called and that data_ptr has been set to point to
a data buffer that has been flagged as BUFFER_READY and bin_stat has been set to point
to the corresponding status flags for the data buffer in question. The variable data_block is
returned by the module fill_data. Use a minimum of three data points to fill in the missing
bins and do not project the data past the first and last data bins actually found. The data set
selected is from the virtual instrument RTLA, which is part of the RETE
instrument/experiment, which is part of the TSS-1 mission, which is identified with the TSS
project.

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_SHORT status, data_block;
SDDAS_FLOAT *data_ptr;
SDDAS_CHAR *bin_stat;

status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

status = buffer_bin_fill (data_key, "", vnum, data_ptr, bin_stat, data_block, 3, 0);

buffer_bin_fill (2R) buffer_bin_fill (2R)

 196 December 28, 2012

if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by buffer_bin_fill routine.\n", status);
 exit (-1);
 }

center_and_band_values (2R) center_and_band_values (2R)

 197 December 28, 2012

CENTER_AND_BAND_VALUES
function - creates the center sweep and/or band width values associated with the data bins

SYNOPSIS

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT center_and_band_values (SDDAS_ULONG data_key,
 SDDAS_CHAR *exten, SDDAS_USHORT version,
 void *idf_data_ptr, SDDAS_SHORT sensor,
 SDDAS_CHAR ret_center, SDDAS_CHAR ret_band,
 SDDAS_FLOAT **center_ptr, SDDAS_FLOAT **low_ptr,
 SDDAS_FLOAT **high_ptr, SDDAS_SHORT *num_bins,
 SDDAS_SHORT *num_converted)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file

names when default files are not to be used, otherwise
a null string

version - IDFS data set identification number which allows for
multiple openings of the same data set

idf_data_ptr - pointer to the idf_data structure that is to hold
sensor data and pertinent ancillary data for the data set
of interest

sensor - sensor identification number
ret_center - flag indicating if the center sweep values are to be

returned
 0 - do not return the center sweep value
 1 - calculate and return the pointer to the
 center sweep values

ret_band - flag indicating if the band width values for the sweep
are to be returned

 0 - do not return the band width values for
 the sweep
 1 - calculate and return the pointer(s) to the
 band width values for the sweep

center_ptr - pointer to the location that holds the center sweep
values

low_ptr - pointer to the location that holds the lower bands for
non-contiguous bands or all band widths for
contiguous bands

high_ptr - pointer to the location that holds the upper bands for
non-contiguous bands

num_bins - the number of values returned

center_and_band_values (2R) center_and_band_values (2R)

 198 December 28, 2012

num_converted - the number of values that were converted to the
desired scientific scan unit

center_and_band_values - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for CENTER_AND_BAND_VALUES
STATUS CODE EXPLANATION OF STATUS

CENTER_NOT_FOUND the requested data_key, exten, version combination has no memory allocated for
processing (user did not call file_open for this combination)

BPTR_NOT_FOUND the data binning information has not been allocated (user did not call set_bin_info
for this combination)

CENTER_NO_SENSOR the requested sensor is not being processed (user did not call select_sensor for this
combination)

BAND_MALLOC no memory for banded sweep values
CENTER_MALLOC no memory for center sweep values
CENTER_TMP_MALLOC no memory for temporary scratch space
CALC_CENTER_DREC an error was returned by read_drec () for fixed sweep binning
ALLOC_EV_REALLOC no memory for sweep array expansion in the idf_data structure
BAD_VFMT bad format character for variable width bin spacing
 Error codes returned by convert_to_units ()
CENTER_CONVERSION only a subset of the center and band values were converted to units
ALL_OKAY routine terminated successfully

DESCRIPTION

Center_and_band_values is the IDFS routine that creates the center and/or band width
sweep step values for the specified sensor. For any given virtual instrument, there may be
one set of sweep step values to be used by all sensors or there may be a set of sweep step
values defined for each individual sensor. In either case, this routine should be called once
for each sensor that is to be processed by the IDFS routines that return time-averaged data
(fill_data / fill_discontinuous_data), sample-averaged data (sweep_data /
sweep_discontinuous_data) or spin-averaged data (spin_data and spin_data_pixel).
These sweep step values are used by the time-averaging, sample-averaging or spin-
averaging module when storing the data into the data bins for VARIABLE_SWEEP
processing (refer to the explanation in the set_bin_info write-up), but are not used for
FIXED_SWEEP processing. The data set of interest is referenced through the key value
data_key which can be created using the get_data_key module. If the only type of data to
be processed for the data set in question is instrument status (mode) data, the user does not
need to call this module since the center_and_band_values routine processes sensor-
specific data and instrument status data is not sensor-specific.

The sweep step values are created using the information specified by the calls to the
set_bin_info and set_scan_info modules. If the set_bin_info module has not been called,
an error code is returned to the calling module. If the set_scan_info module has not been
called, the center and band width values will be calculated in terms of raw units and the
IDFS software will set up the system so that only one set of sweep step values are defined
for all sensors for the data set selected. When FIXED_SWEEP processing is specified in
the call to the set_bin_info module, there may be cases when all the center and band values
are not converted to the units desired. This situation can occur if the unit conversion is
dependent upon calibration data that is stored within the data record. In this case, the

center_and_band_values (2R) center_and_band_values (2R)

 199 December 28, 2012

number of center and band values that are converted to units is dependent upon the number
of data values contained within the first data record processed. This number is returned in
the num_converted parameter and is strictly for informational purposes only and this
module returns the status code CENTER_CONVERSION.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

The parameter idf_data_ptr is a pointer to the structure that is to hold all data pertinent to
the data set being processed. The structure is created and the address to this structure is
returned when a call to the create_idf_data_structure routine is made. The user also has
the option of calling the module create_data_structure, which determines what type of
data structure is needed for the IDFS data set of interest. In most cases, one data structure is
sufficient to process any number of distinct data sets. However, if more than one structure
is needed, the user may call the create_idf_data_structure routine N times to create N
instances of the idf_data structure. The user must keep track of which pointer to send to the
IDFS routines that utilize this structure.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

The contents of the memory locations returned by this module should NOT be altered since
the calculated center/band width values are used by the time-averaging, sample-averaging,
or spin-averaging routine when processing the data. If the returned values need to be
modified, for example, to take the log of the values, the user should allocate space to hold
the values, copy the values into this space and modify the values there.

The module returns two possible pointers for the location(s) that hold the lower and upper
band width values. In the case where the bands are non-contiguous, both the low_ptr and
high_ptr will reference memory locations that hold the band width values. In the case
where the bands are contiguous, there is no need to hold separate upper and lower values –

center_and_band_values (2R) center_and_band_values (2R)

 200 December 28, 2012

the upper limit of the current band is the lower limit of the next band. In this case, one extra
memory location is allocated, the high_ptr pointer is set to nil or 0 and low_ptr is set to
reference the location that holds the band width values.

An instrument may be classified as a vector instrument or as a scalar instrument. A vector
instrument is an instrument whose sensors represent multi-value data sets as opposed to a
scalar instrument whose sensors represent a set of singular data values. If the data set to be
processed is a vector instrument, the user should not call the routine select_sensor for this
data set; otherwise, erroneous center sweep and/or band width values may be computed.

ERRORS

All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

file_open 1R
convert_to_units 1R
fill_data 2R
fill_discontinuous_data 2R
sweep_data 2R
sweep_discontinuous_data 2R
spin_data 2R
spin_data_pixel 2R
get_data_key 1R
set_bin_info 2R
set_scan_info 2R
get_version_number 1R
select_sensor 1R
create_data_structure 1R
create_idf_data_structure 1R
ret_codes 1H
libtrec_idfs 2H

BUGS

None

EXAMPLES

Create the center and band width sweep values for sensor zero for the RTLA virtual
instrument, which is part of the RETE instrument/experiment, which is part of the TSS-1
mission, which is identified with the TSS project.

#include "libbase_idfs.h"
#include "ret_codes.h"

center_and_band_values (2R) center_and_band_values (2R)

 201 December 28, 2012

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_SHORT sensor, status, num_bins, num_converted, bin;
SDDAS_FLOAT *center_ptr, *low_ptr, *high_ptr;
void *idf_data_ptr;

status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

status = create_idf_data_structure (&idf_data_ptr);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by create_idf_data_structure routine.\n",
 status);
 exit (-1);
 }
sensor = 0;
status = center_and_band_values (data_key, "", vnum, idf_data_ptr, sensor, 1, 1,
 ¢er_ptr, &low_ptr, &high_ptr, &num_bins,
 &num_converted);
if (status != ALL_OKAY && status != CENTER_CONVERSION)
 {
 printf ("\n Error returned by center_and_band_values.\n");
 exit (-1);
 }

/* Bands are contiguous? */

if (high_ptr == NULL)
 for (bin = 0; bin < num_bins; ++bin)
 printf ("\nlow = %f high = %f", *(low_ptr + bin), *(low_ptr + bin + 1));

/* Bands are non-contiguous. */

else
 for (bin = 0; bin < num_bins; ++bin)
 printf ("\nlow = %f high = %f", *(low_ptr + bin), *(high_ptr + bin));

center_and_band_values (2R) center_and_band_values (2R)

 202 December 28, 2012

collapse_dimensions (2R) collapse_dimensions (2R)

 203 December 28, 2012

COLLAPSE_DIMENSIONS
function - collapses data over the requested dimensions for a single data level (unit)

SYNOPSIS

#include "libtrec_idfs.h"
#include "ret_codes.h"
#include "user_defs.h"

SDDAS_SHORT collapse_dimensions (SDDAS_ULONG data_key,
 SDDAS_CHAR *exten, SDDAS_USHORT version,
 SDDAS_SHORT sensor, SDDAS_CHAR *dimen,
 SDDAS_FLOAT *s_range, SDDAS_FLOAT *e_range,
 SDDAS_CHAR avg_type, SDDAS_CHAR int_type,
 SDDAS_FLOAT **ret_data, SDDAS_CHAR cyclic,
 SDDAS_SHORT order, SDDAS_LONG need_filled,
 SDDAS_FLOAT tension, SDDAS_CHAR norm_res,
 SDDAS_CHAR bin_project, SDDAS_SHORT unit_index,
 SDDAS_CHAR last_plot, SDDAS_CHAR dlevel,

 SDDAS_CHAR cur_buf)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file names when

default files are not to be used, otherwise a null string
version - IDFS data set identification number which allows for multiple

openings of the same data set
sensor - sensor identification number
dimen - status flag indicator for each possible dimension
s_range - the starting range value for each possible dimension
e_range - the ending range value for each possible dimension
avg_type - the scheme to use in order to reduce the dimensionality

of the data
1 - no reduction is to be performed (NO_AVG)
2 - a straight average is to be performed

(STRAIGHT_AVG)
3 - a straight integration is to be performed

(STRAIGHT_INT)
4 - a spherical integration is to be performed

(SPHERICAL_INT)
5 - a straight average is to be performed assuming

the data represents azimuthal angle values
(STRAIGHT_AVG_AZ)

6 - a flux integration is to be performed
(FLUX_INT)

7 - moments computation is to be performed
(MOMENTS_INT)

collapse_dimensions (2R) collapse_dimensions (2R)

 204 December 28, 2012

int_type - integration scheme to use for calculations
1 - a trapezoidal integration (POINT_INT)
2 - a block integration (BAND_INT)

ret_data - pointer to the resultant matrix or value
cyclic - flag indicating if the data is cyclic

0 - data is not cyclic
1 - data is cyclic

order - the order of the fit, i.e. 1, 2, 3, etc.
 - this parameter is used if the bin fill method

chosen in the call to the set_bin_info
routine is any value other than NO_BIN_FILL.

need_filled - the number of filled bins needed in order to fill in the missing
data bins

tension - the weighting of the data
norm_res - flag indicating if the result is to be normalized

0 - do not normalize the result
1 - normalize the result

bin_project - flag indicating if the data is to be projected into empty bins
beyond the first or last data bin which contains data

0 - do not project the data
1 - project the data

unit_index - index value specifying which sub-buffer returned from the
 fill_data / fill_discontinuous_data / sweep_data /

sweep_discontinuous_data / spin_data / spin_data_pixel
routine is to be processed

last_plot - flag indicating if this call to collapse_dimensions is the last
call to be made for the combination being processed
(necessary for reset purposes)

0 - not the last call for the combination being
processed

1 - the last call for the combination being
processed

dlevel - flag indicating if data is to be reduced to a single value or to
an array of values.

1 - data to be reduced to a single value.
2 - data to be reduced to an array of values (sweep

of values)
cur_buf - the current buffer being processed (number between 0 and

NUM_BUFFERS-1)
collapse_dimensions - routine status (see TABLE 1)

collapse_dimensions (2R) collapse_dimensions (2R)

 205 December 28, 2012

TABLE 1. Status Codes Returned for COLLAPSE_DIMENSIONS

STATUS_CODE EXPLANATION OF STATUS
CDIMEN_NOT_FOUND the requested data_key, exten, version combination has no memory allocated

for processing (user did not call file_open for this combination)
COMPUTE_MOMENTS the routine moments_computations () must be called when requesting the

moments integration averaging method
CDIMEN_COLLAPSE no memory has been allocated to hold the collapsing information (user did not

call set_collapse_info for this combination)
CDIMEN_MANY_SCAN the requested data set has more than one scan range defined
CHRG_PA_ERROR the Straight Average Azimuthal averaging option for the Charge dimension is

not a valid averaging method
MASS_PA_ERROR the Straight Average Azimuthal averaging option for the Mass dimension is

not a valid averaging method
NEG_BIN_STAT the base buffer has a bin status value that is negative
TRANS_3D_BINNED_MALLOC no memory has been allocated to hold the normalization factors needed to

combine those sensors that are mounted at the same theta angles
ALL_OKAY routine terminated successfully

DESCRIPTION

Collapse_dimensions is the IDFS routine that reduces the dimensionality of the data
returned by the time-averaging routine (fill_data / fill_discontinuous_data), the sample-
averaging routine (sweep_data / sweep_discontinuous_data) or the spin-averaging routine
(spin_data / spin_data_pixel). The user should process only those buffers that are flagged
with the status value BUFFER_READY. The data set of interest is referenced through the
key value data_key which can be created using the get_data_key module. This module
can not be used in conjunction with the fill_mode_data / sweep_mode_data module since
dimensionality is associated with sensor-specific data and instrument status data is not
sensor-specific.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null

collapse_dimensions (2R) collapse_dimensions (2R)

 206 December 28, 2012

string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.
This routine will work on one data level or "unit". If there are many data levels to be
processed, there should be multiple calls to this routine, all made after the time-averaging,
sample-averaging, or spin-averaging module has been called. The address of the space that
holds the result is passed back to the user. This may be a single value or may be an array of
values, as indicated by the dlevel parameter. The value for the parameter unit_index can
be retrieved by calling the module units_index, with the third argument from the end
holding the value to be passed to this module. If no data is present in the data buffer being
processed, the module will return the data value(s) -3.4e38 (OUTSIDE_MIN).

The dimensions that are to be collapsed over are specified in the array dimen. The s_range
and e_range parameters are arrays that hold the starting and ending ranges to use to reduce
the data at each possible dimension. All three arrays are order dependent, with the order as
follows:

element 0 range for the scan dimension
element 1 range for the theta dimension
element 2 range for the phi dimension
element 3 range for the mass dimension
element 4 range for the charge dimension
element 5 range for scalar averaging (sensors to be averaged together)

If a given dimension is to be collapsed over, the value within the dimen array
corresponding to that dimension should be set to one. If the dimension is not be collapsed
over, with no impact on the result, the value within the dimen array corresponding to the
dimension should be set to zero. If the hemisphere assumption factor is to be utilized for a
given dimension, the value within the dimen array corresponding to that dimension should
be set to two. The hemisphere assumption factor is dependent upon the dimension being
processed and the scheme (method) selected in order to reduce the dimensionality of the
data. The hemisphere assumption factor is not selectable by the user. The hemisphere
assumption factors were obtained for each method assuming angular isotropy. The table
below summarizes the values used for assumption factors during processing:

TABLE 2. Hemisphere Assumption Factors

DIMENSION STRAIGHT

INTEGRATION
SPHERICAL

INTEGRATION
FLUX

INTEGRATION
CHARGE n / a n / a n /a
MASS n / a n / a n / a
PHI n / a 2^pi^ 2^pi^
THETA n / a 1 0.5
SCAN n / a n / a n / a

The scalar average selection should be set when an average of the sensor data values for
scalar instruments is desired. If the virtual instrument is designed such that there is more

collapse_dimensions (2R) collapse_dimensions (2R)

 207 December 28, 2012

than one scan range defined for all sensors, the error code CDIMEN_MANY_SCAN will
be returned if any dimension other than the scan dimension is selected.

Before the actual collapsing is performed, the missing bins are filled in according to the
method specified with the call to the module set_bin_info. The actual reduction of the data
can be performed in one of three ways: straight average, straight integration and spherical
integration. The straight average is the simplest of the three schemes - a simple average of
the data between the start and stop range specified. A special straight average algorithm is
provided for azimuthal angle data. This algorithm takes into account the roll over to a
minimum value (0º) when the maximum threshold (360º) has been reached or to a
maximum value when the minimum threshold has been reached. If a straight average is not
appropriate, the data can be reduced by integrating over the range specified. The distinction
between a straight and spherical integration is the integration over the sensors. The
spherical integration method may be appropriate when the sensors represent discrete theta
angular ranges. With the integration reduction, the user may also select the integration
scheme, either point or band integration. A point integration is a trapezoidal integration
using the center of each bin as the integration parameter. For band integration, the bin
widths of each bin are used as the integration widths in a rectangular or block integration.

Since missing bins are filled in prior to data reduction, the data matrices must be reset to
their original contents prior to the next call to the time-averaging, sample-averaging, or
spin-averaging routine in order to utilize the interleave option. In order for the module to
know when the data is to be reset, the module examines the contents of the last_plot
parameter. When the contents is set to a one, the data matrices are restored. This parameter
should be set once the last data level is being processed for the data set being requested;
otherwise, erroneous calculations will result.

The parameter avg_type specifies the method that is to be used to reduce the dimensionality
of the data. The range of possible values for the avg_type parameter has been expanded
since the ability to compute moments has been added to the IDFS data access capabilities.
In order to compute the moments value(s), the dimensionality of the data may need to be
reduced. However, the data reduction can not be performed by the collapse_dimensions
routine and is trapped as an error if this function is called. At the present time, the IDFS
Programmers Manual does not contain any information regarding the moments
computations; however, this information will be added once testing of the moments
computation software has been completed.

ERRORS
All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

file_open 1R
fill_data 2R

collapse_dimensions (2R) collapse_dimensions (2R)

 208 December 28, 2012

fill_discontinuous_data 2R
sweep_data 2R
sweep_discontinuous_data 2R
spin_data 2R
spin_data_pixel 2R
set_collapse_info 2R
set_bin_info 2R
units_index 2R
get_data_key 1R
get_version_number 1R
ret_codes 1H
user_defs 1H
libtrec_idfs 2H

BUGS

None

EXAMPLES

Collapse the data returned for sensor 1 for the virtual instrument RTLA, which is part of the
RETE instrument/experiment, which is part of the TSS-1 mission, which is identified with
the TSS project. The data is collapsed over the frequency range 0.16 to 0.9 kilohertz using
a straight average. Assume that only one data level or unit is returned by the time-
averaging, sample-averaging, or spin-averaging routine (default mode) and that buf_stat
had been set.

#include "libtrec_idfs.h"
#include "ret_codes.h"
#include "user_defs.h"
#define DUMMY_VAL 0

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_SHORT status;
SDDAS_FLOAT *data_ptr, start[6], stop[6];
SDDAS_CHAR dimen[6], cur_buf, buf_num, *buf_stat;
static SDDAS_CHAR which_buf = 0;

status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

dimen[0] = 1;

collapse_dimensions (2R) collapse_dimensions (2R)

 209 December 28, 2012

start[0] = 0.16;
stop[0] = 0.9;
dimen[1] = dimen[2] = dimen[3] = dimen[4] = dimen[5] = 0;
start[1] = start[2] = start[3] = start[4] = start[5] = 0.0;
stop[1] = stop[2] = stop[3] = stop[4] = stop[5] = 0.0;

cur_buf = which_buf;
for (buf_num = 0; buf_num < NUM_BUFFERS; ++buf_num)
 {
 if (*(buf_stat + cur_buf) == BUFFER_READY)
 {
 status = collapse_dimensions (data_key, "", vnum, 1, dimen, start, stop,

 STRAIGHT_AVG, DUMMY_VAL, &data_ptr, 0, 1, 3,
 0.0, 1, 1, 0, 1, 1, cur_buf);

 if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by collapse_dimensions routine.\n", status);
 exit (-1);
 }
 which_buf = (cur_buf + 1) % NUM_BUFFERS;
 }
 cur_buf = (cur_buf + 1) % NUM_BUFFERS;
 }

collapse_dimensions (2R) collapse_dimensions (2R)

 210 December 28, 2012

fill_data (2R) fill_data (2R)

 211 December 28, 2012

FILL_DATA
function - returns time-averaged data buffers for data sets that do not roll over when the
minimum/maximum threshold has been reached

SYNOPSIS

#include "libtrec_idfs.h"
#include "ret_codes.h"
#include "user_defs.h"

SDDAS_SHORT fill_data (SDDAS_ULONG data_key, SDDAS_CHAR *exten,
 SDDAS_USHORT version, void *idf_data_ptr,
 SDDAS_SHORT **ret_sensors, SDDAS_FLOAT **ret_data,
 SDDAS_FLOAT **ret_frac, SDDAS_CHAR **bin_stat,
 SDDAS_LONG **bpix, SDDAS_LONG **epix,
 SDDAS_CHAR **ret_stat, SDDAS_SHORT *num_sen,
 SDDAS_SHORT **num_units, SDDAS_SHORT *block_size,
 SDDAS_SHORT **stime_yr, SDDAS_SHORT **stime_day,
 SDDAS_LONG **stime_sec, SDDAS_LONG **stime_nano,
 SDDAS_SHORT **etime_yr, SDDAS_SHORT **etime_day,
 SDDAS_LONG **etime_sec, SDDAS_LONG **etime_nano,
 SDDAS_CHAR *hdr_change,
 SDDAS_UCHAR exclude_dqual)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file names when

default files are not to be used, otherwise a null string
version - IDFS data set identification number which allows for multiple

openings of the same data set
idf_data_ptr - pointer to the idf_data structure that temporarily holds

sensor data and pertinent ancillary data for the data set of
interest

ret_sensors - an array which holds the sensor number(s) for which data is
returned

- the array is initialized to -1 in all elements;
valid sensor numbers start with 0

ret_data - pointer to the data being returned (data for all sensors
processed)

ret_frac - pointer to the normalization factors for the data being returned
bin_stat - pointer to status flags which are associated with each data bin

returned
0 - no data has been placed into the data bin being

processed
1 - data has been placed into the data bin being

processed

fill_data (2R) fill_data (2R)

 212 December 28, 2012

bpix - pointer to the starting pixel location for the data buffers
returned

epix - pointer to the ending pixel location for the data buffers
returned

ret_stat - pointer to the status of each of the data buffers being returned
UNTOUCHED_BUFFER - no data has ever been

placed into the buffer
FREE_BUFFER - no data has been placed

into the buffer being
processed (ready for re-
use)

PARTIAL_WORKING - data is being acquired
into the buffer but is not
ready for processing

BUFFER_READY - - data has been acquired
into the buffer and is
ready for processing

num_sen - the number of elements in the ret_sensors array
num_units - an array holding the number of data sets to bypass in order to

get to the data for the sensor being processed
block_size - the number of data values returned in a data buffer
stime_yr - pointer to the start time year values for the data buffers

returned
stime_day - pointer to the start time day of year values for the data buffers

returned
stime_sec - pointer to the start time of day values (in seconds) for the data

buffers returned
stime_nano - pointer to the start time of day residuals (in nanoseconds) for

the data buffers returned
etime_yr - pointer to the end time year values for the data buffers

returned
etime_day - pointer to the end time day of year values for the data buffers

returned
etime_sec - pointer to the end time of day values (in seconds) for the data

buffers returned
etime_nano - pointer to the end time of day residuals (in nanoseconds) for

the data buffers returned
hdr_change - flag which indicates a header change occurred while

processing the data
0 - a header change was not encountered during

the processing of the data
1 - a header change was encountered

during the processing of the data
exclude_dqual - data is to be excluded if the d_qual flag associated with the

data is set to the value specified
fill_data - routine status (see TABLE 1)

fill_data (2R) fill_data (2R)

 213 December 28, 2012

TABLE 1. Status Codes Returned for FILL_DATA

STATUS CODE EXPLANATION OF STATUS
FILL_NOT_FOUND the requested data_key, exten, version combination has no memory allocated for

processing (user did not call file_open for this combination)
FILL_ARRAY_MALLOC no memory for structure which hold information pertinent to the time-averaged

data
FILL_BASE_TIME_MISSING the time interval information has not been set (user did not call set_time_values

for this combination)
FILL_BIN_MISSING the data binning information has not been allocated (user did not call

set_bin_info for this combination)
FILL_CENTER_BAND_MISSING the routine center_and_band_values has not been called prior to calling the

fill_data routine
FILL_INFO_MALLOC no memory for data buffer information
FILL_UNITS_MALLOC no memory to hold the various data levels for the data buffers
FILL_UNITS_REALLOC no memory for expansion of space to hold the various data levels for the data

buffers
FILL_SWP_MALLOC no memory for
FILL_SWP_REALLOC no memory for expansion of sweep values in specified units
FILL_DATA_MALLOC no memory for data buffers
FILL_WITH_SWEEP the modules fill_data and sweep_data cannot be used interchangeably for the

same data key, extension, version combination
BAD_VFMT bad format character for variable width bin spacing
NO_EMPTY_BUFFERS no spare buffers for data accumulation
PHI_DIFF_UNITS the sensors being processed do not process the same number of data levels

(units)
FILL_PHI_FIRST the starting azimuthal angle was not contained within any of the defined phi bins
FILL_PHI_LAST the ending azimuthal angle was not contained within any of the defined phi bins
 Error codes returned by read_drec ()
 Error codes returned by convert_to_units ()
 Error codes returned by fill_sensor_info ()
ALL_OKAY routine terminated successfully

DESCRIPTION

Fill_data is the IDFS time-averaging data read routine, retrieving data for all sensors that
return data for the time duration being processed. The data set of interest is referenced
through the key value data_key which can be created using the get_data_key module.
Fill_data processes sensor-specific data only, that is, it processes sensor, sweep step,
calibration, data quality, pitch angle, azimuthal angle, spacecraft potential and background
data. If the instrument status (mode) data is desired, the user should use the fill_mode_data
routine. Fill_data assumes that the data set of interest does not roll over to a minimum
value when the maximum threshold has been reached or to a maximum value when the
minimum threshold has been reached. This assumption is crucial since multiple samples
may be averaged together in a single buffer. If the data set does roll over at the thresholds,
the averaging of these samples will probably result in incorrect data values. An example of
a roll over data set is longitude data, which resets values to the minimum threshold (-180)
when the maximum threshold (180) has been reached. If the data set does roll over, the
user should use the fill_discontinuous_data routine. If the data set of interest is a
combination of roll over and non-roll over data, for example, longitude data being returned
along with science data, the user may use the fill_discontinuous_data module in

fill_data (2R) fill_data (2R)

 214 December 28, 2012

conjunction with the fill_data routine, using the fill_data routine to return the non-roll over
data values and using the fill_discontinuous_data routine to return the roll over data
values. In order to do this correctly, the user must make use of multiple version numbers so
that the same data files can be opened more than once. That is, use one version number for
the non-roll over data and another version number for the roll over data. All IDFS routines
that utilize a version number must be called once for each unique version number.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

The parameter idf_data_ptr is a pointer to the structure that is to hold all data pertinent to
the data set being processed. The structure is created and the address to this structure is
returned when a call to the create_idf_data_structure routine is made. The user also has
the option of calling the module create_data_structure, which determines what type of
data structure is needed for the IDFS data set of interest. In most cases, one data structure is
sufficient to process any number of distinct data sets. However, if more than one structure
is needed, the user may call the create_idf_data_structure routine N times to create N
instances of the idf_data structure. The user must keep track of which pointer to send to
the IDFS routines that utilize this structure.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

This routine will process data one sweep at a time, placing the data into buffers which hold
data that is accumulated over a specified time interval. Once the time interval has been
processed, the routine will return the data buffers and a status value for each buffer which
indicates when the buffer is ready for the user to retrieve. The user must call the module
set_time_values before the fill_data module can be called since the set_time_values
module is used to specify the base time value and reference location and the time interval
(delta) to use to accumulate the data. If the fill_data routine determines that the
set_time_values module has not been called, an error code is returned to the user.

fill_data (2R) fill_data (2R)

 215 December 28, 2012

Along with the data being returned, there is a starting location and an ending location that is
returned for each of the data buffers. The user may use these values as references to the
base location specified in the call to the set_time_values module. That is, given a base time
value, a time interval and a reference location, the fill_data routine will return the location
of data with respect to time. The user may chose to ignore these values or may use these
locations to plot data along an axis that is scaled with respect to time.

There are a constant number of data buffers that are used by the fill_data module. This
number is defined as NUM_BUFFERS in the user_defs.h file. This file is described in
section 1H of the IDFS Programmers Manual. These data buffers are utilized in a cyclic
nature, with buffer 0 being re-used once buffer NUM_BUFFERS-1 has been filled. The
data buffers that are ready to be processed are flagged with the status value
BUFFER_READY. For each buffer, there are N many sub-buffers which hold the data in
each of the requested data levels or units. The user must process the data contained within
these buffers before the next call to the fill_data module is made since the module will clear
out these buffers for re-use. This holds true even when an LOS_STATUS or
NEXT_FILE_STATUS status code is returned. The data values must be normalized using
the normalization factors returned along with the data. Since the buffers are cyclic, the user
may wish to keep a variable indicating the last buffer number processed so that the user can
start at the time sample left off from the previous call to the fill_data module at the next
call. It is important to note that there is one status flag per data buffer that is used by all
sensors. If the sensors rotate or alternate when data is returned, the result may be that a
buffer is flagged as BUFFER_READY but may not contain any data since the data buffers
are reset or cleared out upon each call to the fill_data module. The user is advised to check
the value or values in the bin_stat array. If all values are 0, no data was placed into the
buffers.

The size and spacing of the data buffers are either defined by the user or by elements
contained within the virtual instrument definition document. The user must call the
set_bin_info module before calling the fill_data routine in order to specify how the binning
of the data is to occur. In addition, the user must call the center_and_band_values module
before calling the fill_data module. If the fill_data routine determines that no binning
scheme has been selected, an error code is returned to the user.

The user should be aware that the data buffers that come back from the fill_data module are
NOT modified as far as missing bins is concerned. If the user wishes to fill in the missing
bins according to the method specified in the call to the set_bin_info module, the user must
call the buffer_bin_fill module. If the data are collapsed over specified dimensions, the
buffer_bin_fill module need not be called.

The default mode for the fill_data routine is to return sensor data in raw units (no tables
applied) for each of the sensors processed, with data cutoff values set at -3.0e38
(VALID_MIN) and 3.0e38 (VALID_MAX). The user may select the type of data, the units
to be returned and the data cutoff values to be applied by calling the fill_sensor_info
module prior to calling the fill_data module. The user should make one call to the

fill_data (2R) fill_data (2R)

 216 December 28, 2012

fill_sensor_info module for each sensor that is to be retrieved for each data type/units/data
cutoff combination selected.

If the virtual instrument acquires data over the PHI dimension and the user wishes to
average the data over a specified phi range, the fill_data routine must be used to acquire the
phi data matrix. The user must call the module set_collapse_info prior to calling the
fill_data module in order to specify the resolution of the phi bins and to specify if the
interleave option is to be utilized when building the phi matrix.

The parameter exclude_dqual holds a single value that is compared against the d_qual
value found in the header record for the sensor being processed. If the user wishes to
exclude data that is flagged with a specific d_qual value, the user should set the
exclude_dqual value to this specific value. If the user wishes to include all data
encountered, the user should set the exclude_dqual value to 255.

ERRORS
All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

file_open 1R
read_drec 1R
convert_to_units 1R
set_time_values 2R
fill_discontinuous_data 2R
fill_mode_data 2R
set_bin_info 2R
center_and_band_values 2R
fill_sensor_info 2R
set_collapse_info 2R
buffer_bin_fill 2R
get_data_key 1R
get_version_number 1R
create_data_structure 1R
create_idf_data_structure 1R
ret_codes 1H
user_defs 1H
libtrec_idfs 2H

BUGS

None

fill_data (2R) fill_data (2R)

 217 December 28, 2012

EXAMPLES
Obtain time-averaged data from the virtual instrument RTLA, which is part of the RETE
instrument/experiment, which is part of the TSS-1 mission, which is identified with the TSS
project.

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_FLOAT *ret_data, *ret_frac;
SDDAS_LONG *start_time_sec, *start_time_nano, *end_time_sec, *end_time_nano;
SDDAS_LONG *bpix, *epix;
SDDAS_SHORT *start_time_yr, *start_time_day, *end_time_yr, *end_time_day;
SDDAS_SHORT status, *sen_numbers, num_sen, *num_units, data_block;
SDDAS_CHAR *ret_bin, hdr_change, *buf_stat;
void *idf_data_ptr;

status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

status = create_idf_data_structure (&idf_data_ptr);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by create_idf_data_structure routine.\n", status);
 exit (-1);
 }

status = fill_data (data_key, "", vnum, idf_data_ptr, &sen_numbers, &ret_data,
 &ret_frac, &ret_bin, &bpix, &epix, &buf_stat, &num_sen,
 &num_units, &data_block, &start_time_yr, &start_time_day,
 &start_time_sec, &start_time_nano, &end_time_yr, &end_time_day,
 &end_time_sec, &end_time_nano, &hdr_change, 255);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by fill_data routine.\n", status);
 exit (-1);
 }

fill_data (2R) fill_data (2R)

 218 December 28, 2012

fill_data_envelope (2R) fill_data_envelope (2R)

 219 December 28, 2012

FILL_DATA_ENVELOPE
function - returns the data envelope (minimum and maximum values) for the time interval
being processed

SYNOPSIS

#include "libtrec_idfs.h"
#include "ret_codes.h"
#include "user_defs.h"

SDDAS_SHORT fill_data_envelope (SDDAS_ULONG data_key, SDDAS_CHAR *exten,
 SDDAS_USHORT version, void *idf_data_ptr,
 SDDAS_SHORT **ret_sensors, SDDAS_FLOAT **ret_min,
 SDDAS_FLOAT **ret_max, SDDAS_CHAR **bin_stat,
 SDDAS_LONG **bpix, SDDAS_LONG **epix,
 SDDAS_CHAR **buf_stat, SDDAS_SHORT *num_sen,
 SDDAS_SHORT **num_units, SDDAS_SHORT *block_size,
 SDDAS_SHORT **stime_yr, SDDAS_SHORT **stime_day,
 SDDAS_LONG **stime_sec, SDDAS_LONG **stime_nano,
 SDDAS_SHORT **etime_yr, SDDAS_SHORT **etime_day,
 SDDAS_LONG **etime_sec, SDDAS_LONG **etime_nano,
 SDDAS_CHAR *hdr_change,
 SDDAS_UCHAR exclude_dqual)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file names when

default files are not to be used, otherwise a null string
version - IDFS data set identification number which allows for multiple

openings of the same data set
idf_data_ptr - pointer to the idf_data structure that temporarily holds sensor

data and pertinent ancillary data for the data set of interest
ret_sensors - an array which holds the sensor number(s) for which data is

returned
- the array is initialized to -1 in all elements;

valid sensor numbers start with 0
ret_min - pointer to the minimum data value encountered for the

buffer(s) returned
ret_max - pointer to the maximum data value encountered for the

buffer(s) returned
bin_stat - pointer to status flags which are associated with each data bin

returned
0 - no data has been placed into the data bin being

processed
1 - data has been placed into the data bin being

processed

fill_data_envelope (2R) fill_data_envelope (2R)

 220 December 28, 2012

bpix - pointer to the starting pixel location for the data buffers
returned

epix - pointer to the ending pixel location for the data buffers
returned

buf_stat - pointer to the status of each of the data buffers being returned
UNTOUCHED_BUFFER - no data has ever been

placed into the buffer
FREE_BUFFER - no data has been placed

into the buffer being
processed (ready for re-
use)

PARTIAL_WORKING - data is being acquired
into the buffer but is not
ready for processing

BUFFER_READY - - data has been acquired
into the buffer and is
ready for processing

num_sen - the number of elements in the ret_sensors array
num_units - an array holding the number of data sets to bypass in order to

get to the data for the sensor being processed
block_size - the number of data values returned in a data buffer
stime_yr - pointer to the start time year values for the data buffers

returned
stime_day - pointer to the start time day of year values for the data buffers

returned
stime_sec - pointer to the start time of day values (in seconds) for the data

buffers returned
stime_nano - pointer to the start time of day residuals (in nanoseconds) for

the data buffers returned
etime_yr - pointer to the end time year values for the data buffers

returned
etime_day - pointer to the end time day of year values for the data buffers

returned
etime_sec - pointer to the end time of day values (in seconds) for the data

buffers returned
etime_nano - pointer to the end time of day residuals (in nanoseconds) for

the data buffers returned
hdr_change - flag which indicates a header change occurred while

processing the data
0 - a header change was not encountered during

the processing of the data
1 - a header change was encountered

during the processing of the data
exclude_dqual - data is to be excluded if the d_qual flag associated with the

data is set to the value specified
fill_data_envelope - routine status (see TABLE 1)

fill_data_envelope (2R) fill_data_envelope (2R)

 221 December 28, 2012

TABLE 1. Status Codes Returned for FILL_DATA_ENVELOPE

STATUS CODE EXPLANATION OF STATUS
FILL_ENV_NOT_FOUND the requested data_key, exten, version combination has no memory

allocated for processing (user did not call file_open for this combination)
FILL_ENV_SCALAR the requested data source is non-scalar
FILL_ARRAY_MALLOC no memory for structure which hold information pertinent to the time-

rectified data
FILL_ENV_BASE_TIME_MISSING the time interval information has not been set (user did not call

set_time_values for this combination)
FILL_ENV_BIN_MISSING the data binning information has not been allocated (user did not call

set_bin_info for this combination)
FILL_ENV_CENTER_BAND_MISSING the routine center_and_band_values has not been called prior to calling

the fill_data_envelope routine
FILL_INFO_MALLOC no memory for data buffer information
FILL_UNITS_MALLOC no memory to hold the various data levels for the data buffers
FILL_UNITS_REALLOC no memory for expansion of space to hold the various data levels for the

data buffers
FILL_SWP_MALLOC no memory for sweep values in specified units
FILL_SWP_REALLOC no memory for expansion of sweep values in specified units
FILL_DATA_MALLOC no memory for data buffers
FILL_ENV_WITH_SWEEP the modules fill_data_envelope and sweep_data cannot be used

interchangeably for the same data key, extension, version combination
BAD_VFMT bad format character for variable width bin spacing
PHI_DIFF_UNITS the sensors being processed do not process the same number of data levels

(units)
FILL_PHI_FIRST the starting azimuthal angle was not contained within any of the defined

phi bins
FILL_PHI_LAST the ending azimuthal angle was not contained within any of the defined

phi bins
NO_EMPTY_BUFFERS no spare buffers for data accumulation
 Error codes returned by read_drec ()
 Error codes returned by convert_to_units ()
 Error codes returned by fill_sensor_info ()
ALL_OKAY routine terminated successfully

DESCRIPTION

Fill_data_envelope is the IDFS data read routine which returns the minimum and
maximum data values encountered for the time duration being processed.
Fill_data_envelope retrieves data for all sensors that return data for the time duration being
processed. The data set of interest is referenced through the key value data_key which can
be created using the get_data_key module. Fill_data_envelope processes sensor-specific
data only, that is, it processes sensor, sweep step, calibration, data quality, pitch angle,
azimuthal angle, spacecraft potential and background data. Currently, there is no similar
module defined to return the data envelope encountered for instrument status (mode) data.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the

fill_data_envelope (2R) fill_data_envelope (2R)

 222 December 28, 2012

IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

The parameter idf_data_ptr is a pointer to the structure that is to hold all data pertinent to
the data set being processed. The structure is created and the address to this structure is
returned when a call to the create_idf_data_structure routine is made. The user also has
the option of calling the module create_data_structure, which determines what type of
data structure is needed for the IDFS data set of interest. In most cases, one data structure is
sufficient to process any number of distinct data sets. However, if more than one structure
is needed, the user may call the create_idf_data_structure routine N times to create N
instances of the idf_data structure. The user must keep track of which pointer to send to
the IDFS routines that utilize this structure.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

This routine will process data one sweep at a time, placing the data into buffers which hold
data that is accumulated over a specified time interval. Once the time interval has been
processed, the routine will return the data buffers and a status value for each buffer which
indicates when the buffer is ready for the user to retrieve. The user must call the module
set_time_values before the fill_data_envelope module can be called since the
set_time_values module is used to specify the base time value and reference location and
the time interval (delta) to use to accumulate the data. If the fill_data_envelope routine
determines that the set_time_values module has not been called, an error code is returned
to the user.

Along with the data envelope being returned, there is a starting location and an ending
location that is returned for each of the data buffers. The user may use these values as
references to the base location specified in the call to the set_time_values module. That is,
given a base time value, a time interval and a reference location, the fill_data_envelope
routine will return the location of data with respect to time. The user may choose to ignore
these values or may use these locations to plot data along an axis that is scaled with respect
to time.

fill_data_envelope (2R) fill_data_envelope (2R)

 223 December 28, 2012

There are a constant number of data buffers that are used by the fill_data_envelope
module. This number is defined as NUM_BUFFERS in the user_defs.h file. This file is
described in section 1H of the IDFS Programmers Manual. These data buffers are utilized
in a cyclic nature, with buffer 0 being re-used once buffer NUM_BUFFERS-1 has been
filled. The data buffers that are ready to be processed are flagged with the status value
BUFFER_READY. For each buffer, there are N many sub-buffers which hold the data in
each of the requested data levels or units. The user must process the data contained within
these buffers before the next call to the fill_data_envelope routine is made since the
module will clear out these buffers for re-use. This holds true even when an LOS_STATUS
or NEXT_FILE_STATUS status code is returned. Since the buffers are cyclic, the user
may wish to keep a variable indicating the last buffer number processed so that the user can
start at the time sample left off from the previous call to the fill_data_envelope module at
the next call. It is important to note that there is one status flag per data buffer that is used
by all sensors. If the sensors rotate or alternate when data is returned, the result may be that
a buffer is flagged as BUFFER_READY but may not contain any data since the data buffers
are reset or cleared out upon each call to the fill_data_envelope module. The user is
advised to check the value or values in the bin_stat array. If all values are 0, no data was
placed into the buffers.

The size and spacing of the data buffers are either defined by the user or by elements
contained within the virtual instrument definition document. The user must call the
set_bin_info module before calling the fill_data_envelope routine in order to specify how
the binning of the data is to occur. If the fill_data_envelope routine determines that no
binning scheme has been selected, an error code is returned to the user.

The default mode for the fill_data_envelope routine is to return sensor data in raw units (no
tables applied) for each of the sensors processed, with data cutoff values set at -3.0e38
(VALID_MIN) and 3.0e38 (VALID_MAX). The user may select the type of data, the units
to be returned and the data cutoff values to be applied by calling the fill_sensor_info
module prior to calling the fill_data_envelope module. The user should make one call to
the fill_sensor_info module for each sensor that is to be retrieved for each data
type/units/data cutoff combination selected.

Unlike the module fill_data, fill_data_envelope has no provisions for the averaging of the
data returned since the data source must be a scalar source. In other words, there is no
allowance for the collapsing of the data over data dimensions (refer to set_collapse_info if
this statement is unclear). In addition, since the data source must be a scalar source, there is
only one bin defined per data buffer; therefore, data is either returned or not returned.
There are no provisions made to fill in missing bins since there is only one bin defined
(refer to buffer_bin_fill if this statement is unclear).

The parameter exclude_dqual holds a single value that is compared against the d_qual
value found in the header record for the sensor being processed. If the user wishes to
exclude data that is flagged with a specific d_qual value, the user should set the
exclude_dqual value to this specific value. If the user wishes to include all data
encountered, the user should set the exclude_dqual value to 255.

fill_data_envelope (2R) fill_data_envelope (2R)

 224 December 28, 2012

ERRORS
All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

file_open 1R
read_drec 1R
convert_to_units 1R
set_time_values 2R
set_bin_info 2R
fill_sensor_info 2R
get_data_key 1R
get_version_number 1R
create_data_structure 1R
create_idf_data_structure 1R
ret_codes 1H
user_defs 1H
libtrec_idfs 2H

BUGS

None

EXAMPLES

Obtain the data envelope for the virtual instrument RTLA, which is part of the RETE
instrument/experiment, which is part of the TSS-1 mission, which is identified with the TSS
project.

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_FLOAT *ret_min, *ret_max;
SDDAS_LONG *start_time_sec, *start_time_nano, *end_time_sec, *end_time_nano;
SDDAS_LONG *bpix, *epix;
SDDAS_SHORT *start_time_yr, *start_time_day, *end_time_yr, *end_time_day;
SDDAS_SHORT status, *sen_numbers, num_sen, *num_units, data_block;
SDDAS_CHAR *ret_bin, hdr_change, *buf_stat;
void *idf_data_ptr;

status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);

fill_data_envelope (2R) fill_data_envelope (2R)

 225 December 28, 2012

if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

status = create_idf_data_structure (&idf_data_ptr);

if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by create_idf_data_structure routine.\n", status);
 exit (-1);
 }

status = fill_data_envelope (data_key, "", vnum, idf_data_ptr, &sen_numbers,
 &ret_min, &ret_max, &ret_bin, &bpix, &epix, &buf_stat,
 &num_sen, &num_units, &data_block, &start_time_yr,
 &start_time_day, &start_time_sec, &start_time_nano,
 &end_time_yr, &end_time_day, &end_time_sec, &end_time_nano,
 &hdr_change, 255);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by fill_data_envelope routine.\n", status);
 exit (-1);
 }

fill_data_envelope (2R) fill_data_envelope (2R)

 226 December 28, 2012

fill_discontinuous_data (2R) fill_discontinuous_data (2R)

 227 December 28, 2012

FILL_DISCONTINUOUS_DATA
function - returns time-averaged data buffers for data sets that roll over to a minimum value
when the maximum threshold has been reached

SYNOPSIS

#include "libtrec_idfs.h"
#include "ret_codes.h"
#include "user_defs.h"

SDDAS_SHORT fill_discontinuous_data (SDDAS_ULONG data_key,
 SDDAS_CHAR *exten, SDDAS_USHORT version,
 void *idf_data_ptr, SDDAS_SHORT **ret_sensors,
 SDDAS_FLOAT **ret_data, SDDAS_FLOAT **ret_frac,
 SDDAS_CHAR **bin_stat, SDDAS_LONG **bpix,
 SDDAS_LONG **epix, SDDAS_CHAR **ret_stat,
 SDDAS_SHORT *num_sen, SDDAS_SHORT **num_units,
 SDDAS_SHORT *block_size, SDDAS_SHORT **stime_yr,
 SDDAS_SHORT **stime_day, SDDAS_LONG **stime_sec,
 SDDAS_LONG **stime_nano, SDDAS_SHORT **etime_yr,
 SDDAS_SHORT **etime_day, SDDAS_LONG **etime_sec,
 SDDAS_LONG **etime_nano, SDDAS_CHAR *hdr_change,
 SDDAS_UCHAR exclude_dqual)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file

names when default files are not to be used, otherwise
a null string

version - IDFS data set identification number which allows for
multiple openings of the same data set

idf_data_ptr - pointer to the idf_data structure that temporarily
holds sensor data and pertinent ancillary data for the
data set of interest

ret_sensors - an array which holds the sensor number(s) for which
data is returned
- the array is initialized to -1 in all elements;
 valid sensor numbers start with 0

ret_data - pointer to the data being returned (data for all sensors
processed)

ret_frac - pointer to the normalization factors for the data being
returned

bin_stat - pointer to status flags which are associated with each
data bin returned

0 - no data has been placed into the data
bin being processed

fill_discontinuous_data (2R) fill_discontinuous_data (2R)

 228 December 28, 2012

1 - data has been placed into the data bin
being processed

bpix - pointer to the starting pixel location for the data
buffers returned

epix - pointer to the ending pixel location for the data buffers
returned

ret_stat - pointer to the status of each of the data buffers being
returned

UNTOUCHED_BUFFER - no data has ever
 been placed into
 the buffer
FREE_BUFFER - no data has been
 placed into the
 buffer being
 processed (ready
 for re-use)
PARTIAL_WORKING - data is being
 acquired into the
 buffer but is not
 ready for
 processing
BUFFER_READY - data has been
 acquired into the
 buffer and is
 ready for
 processing

num_sen - the number of elements in the ret_sensors array
num_units - an array holding the number of data sets to bypass in

order to get to the data for the sensor being processed
block_size - the number of data values returned in a data buffer
stime_yr - pointer to the start time year values for the data buffers

returned
stime_day - pointer to the start time day of year values for the data

buffers returned
stime_sec - pointer to the start time of day values (in seconds) for

the data buffers returned
stime_nano - pointer to the start time of day residuals (in

nanoseconds) for the data buffers returned
etime_yr - pointer to the end time year values for the data buffers

returned
etime_day - pointer to the end time day of year values for the data

buffers returned
etime_sec - pointer to the end time of day values (in seconds) for

the data buffers returned
etime_nano - pointer to the end time of day residuals (in

nanoseconds) for the data buffers returned

fill_discontinuous_data (2R) fill_discontinuous_data (2R)

 229 December 28, 2012

hdr_change - flag which indicates a header change occurred while
processing the data

0 - a header change was not encountered
during the processing of the data

1 - a header change was encountered
during the processing of the data

exclude_dqual - data is to be excluded if the d_qual flag associated
with the data is set to the value specified

fill_discontinuous_data - routine status (see TABLE 1)

TABLE 1. Status Code Returned for FILL_DISCONTINUOUS_DATA

STATUS CODE EXPLANATION OF STATUS
FILL_DISC_NOT_FOUND the requested data_key, exten, version combination has no memory

allocated for processing (user did not call file_open for this combination)
FILL_DISC_BASE_TIME_MISSING the time interval information has not been set (user did not call

set_time_values for this combination
FILL_DISC_BIN_MISSING The data binning information has not been allocated (user did not call

set_bin_info for this combination)
FILL_DISC_CENTER_BAND_MISSING the routine center_and_band_values has not been called prior to calling

the fill_discontinuous_data routine
FILL_DISC_NO_PHI data sets with PHI, MASS and/or CHARGE dimensions are not supported
FILL_ARRAY_MALLOC no memory for structure which hold information pertinent to the time-

averaged data
FILL_DISC_MALLOC no memory for structure which hold information pertinent to

discontinuous data sets
FILL_INFO_MALLOC no memory for data buffer information
FILL_UNITS_MALLOC no memory to hold the various data levels for the data buffers
FILL_UNITS_REALLOC no memory for expansion of space to hold the various data levels for the

data buffers
FILL_SWP_MALLOC no memory for sweep values in specified units
FILL_SWP_REALLOC no memory for expansion of sweep values in specified units
FILL_DATA_MALLOC no memory for data buffers
SWEEP_INFO_MALLOC no memory for data buffer information
SWEEP_UNITS_MALLOC no memory to hold the various data levels for the data buffer
SWEEP_UNITS_REALLOC no memory for expansion of space to hold the various data levels for the

data buffer
SWEEP_SWP_MALLOC no memory for sweep values in specified units
SWEEP_SWP_REALLOC no memory for expansion of sweep values in specified units
SWEEP_DATA_MALLOC no memory for data buffer
DISC_DATA_MALLOC no memory for the internal data buffers that are pertinent only to

discontinuous data sets
FILL_WITH_SWEEP_DISC the modules fill_discontinuous_data and sweep_discontinuous_data

cannot be used interchangeably for the same data key, extension, version
combination.

BAD_VFMT bad format character for variable width bin spacing
DISC_TMP_MALLOC no memory for scratch space utilized to process discontinuous data sets
NO_EMPTY_BUFFERS no spare buffers for data accumulation
 Error codes returned by read_drec ()
 Error codes returned by convert_to_units ()
 Error codes returned by fill_sensor_info ()

fill_discontinuous_data (2R) fill_discontinuous_data (2R)

 230 December 28, 2012

STATUS CODE EXPLANATION OF STATUS
ALL_OKAY routine terminated successfully

DESCRIPTION

Fill_discontinuous_data is the IDFS time-averaging data read routine, retrieving data for
all sensors that return data for the time duration being processed. The data set of interest is
referenced through the key value data_key which can be created using the get_data_key
module. Fill_discontinuous_data processes sensor-specific data only, that is, it processes
sensor, sweep step, calibration, data quality, pitch angle, azimuthal angle, spacecraft
potential and background data. If the instrument status (mode) data is desired, the user
should use the fill_mode_data routine. Fill_discontinuous_data assumes that the data set
of interest rolls over to a minimum value when the maximum threshold has been reached or
to a maximum value when the minimum threshold has been reached. This assumption is
crucial since multiple samples may be averaged together in a single buffer. Before each
sample is added to the buffer, a check is made to see if a "boundary" or threshold has been
crossed. If so, the value is adjusted so that the addition of the values result in a correct
averaged value. Currently, these threshold values are preset at -180 (minimum threshold)
and 180 (maximum threshold). If the data set does not roll over, the user should use the
fill_data routine. If the data set of interest is a combination of roll over and non-roll over
data, for example, longitude data being returned along with science data, the user may use
the fill_discontinuous_data module in conjunction with the fill_data routine, using the
fill_data routine to return the non-roll over data values and using the
fill_discontinuous_data routine to return the roll over data values. In order to do this
correctly, the user must make use of multiple version numbers so that the same data files
can be opened more than once. That is, use one version number for the non-roll over data
and another version number for the roll over data. All IDFS routines that utilize a version
number must be called once for each unique version number.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

The parameter idf_data_ptr is a pointer to the structure that is to hold all data pertinent to
the data set being processed. The structure is created and the address to this structure is
returned when a call to the create_idf_data_structure routine is made. The user also has
the option of calling the module create_data_structure, which determines what type of
data structure is needed for the IDFS data set of interest. In most cases, one data structure is
sufficient to process any number of distinct data sets. However, if more than one structure
is needed, the user may call the create_idf_data_structure routine N times to create N

fill_discontinuous_data (2R) fill_discontinuous_data (2R)

 231 December 28, 2012

instances of the idf_data structure. The user must keep track of which pointer to send to
the IDFS routines that utilize this structure.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

This routine will process data one sweep at a time, placing the data into buffers which hold
data that is accumulated over a specified time interval. Once the time interval has been
processed, the routine will return the data buffers and a status value for each buffer which
indicates when the buffer is ready for the user to retrieve. The user must call the module
set_time_values before the fill_discontinuous_data module can be called since the
set_time_values module is used to specify the base time value and reference location and
the time interval (delta) to use to accumulate the data. If the fill_discontinuous_data
routine determines that the set_time_values module has not been called, an error code is
returned to the user.

Along with the data being returned, there is a starting location and an ending location that is
returned for each of the data buffers. The user may use these values as references to the
base location specified in the call to the set_time_values module. That is, given a base time
value, a time interval and a reference location, the fill_discontinuous_data routine will
return the location of data with respect to time. The user may chose to ignore these values
or may use these locations to plot data along an axis that is scaled with respect to time.

There are a constant number of data buffers that are used by the fill_discontinuous_data
module. This number is defined as NUM_BUFFERS in the user_defs.h file. This file is
described in section 1H of the IDFS Programmers Manual. These data buffers are utilized
in a cyclic nature, with buffer 0 being re-used once buffer NUM_BUFFERS-1 has been
filled. The data buffers that are ready to be processed are flagged with the status value
BUFFER_READY. For each buffer, there are N many sub-buffers which hold the data in
each of the requested data levels or units. The user must process the data contained within
these buffers before the next call to the fill_discontinuous_data routine is made since the
module will clear out these buffers for re-use. This holds true even when an LOS_STATUS
or NEXT_FILE_STATUS status code is returned. The data values must be normalized
using the normalization factors returned along with the data. Since the buffers are cyclic,
the user may wish to keep a variable indicating the last buffer number processed so that the
user can start at the time sample left off from the previous call to the
fill_discontinuous_data routine at the next call. It is important to note that there is one
status flag per data buffer that is used by all sensors. If the sensors rotate or alternate when

fill_discontinuous_data (2R) fill_discontinuous_data (2R)

 232 December 28, 2012

data is returned, the result may be that a buffer is flagged as BUFFER_READY but may not
contain any data since the data buffers are reset or cleared out upon each call to the
fill_discontinuous_data module. The user is advised to check the value or values in the
bin_stat array. If all values are 0, no data was placed into the buffers.

The size and spacing of the data buffers are either defined by the user or by elements
contained within the virtual instrument definition document. The user must call the
set_bin_info module before calling the fill_discontinuous_data routine in order to specify
how the binning of the data is to occur. In addition, the user must call the
center_and_band_values module before calling the fill_discontinuous_data module. If
the fill_discontinuous_data routine determines that no binning scheme has been selected,
an error code is returned to the user.

The user should be aware that the data buffers that come back from the
fill_discontinuous_data module are NOT modified as far as missing bins is concerned. If
the user wishes to fill in the missing bins according to the method specified in the call to the
set_bin_info routine, the user must call the module buffer_bin_fill. If the data are
collapsed over specified dimensions, the buffer_bin_fill module need not be called. The
user should be advised that the fill_discontinuous_data routine can not process data sets
with a PHI, MASS and/or CHARGE dimensionality.

The default mode for the fill_discontinuous_data routine is to return sensor data in raw
units (no tables applied) for each of the sensors processed, with data cutoff values set at -
3.0e38 (VALID_MIN) and 3.0e38 (VALID_MAX). The user may select the type of data,
the units to be returned and the data cutoff values to be applied by calling the
fill_sensor_info module prior to calling the fill_discontinuous_data module. The user
should make one call to the fill_sensor_info module for each sensor that is to be retrieved
for each data type/units/data cutoff combination selected.

The parameter exclude_dqual holds a single value that is compared against the d_qual
value found in the header record for the sensor being processed. If the user wishes to
exclude data that is flagged with a specific d_qual value, the user should set the
exclude_dqual value to this specific value. If the user wishes to include all data
encountered, the user should set the exclude_dqual value to 255.

ERRORS

All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

file_open 1R
read_drec 1R
convert_to_units 1R
set_time_values 2R

fill_discontinuous_data (2R) fill_discontinuous_data (2R)

 233 December 28, 2012

fill_data 2R
fill_mode_data 2R
set_bin_info 2R
center_and_band_values 2R
fill_sensor_info 2R
buffer_bin_fill 2R
get_data_key 1R
get_version_number 1R
create_data_structure 1R
create_idf_data_structure 1R
ret_codes 1H
user_defs 1H
libtrec_idfs 2H

BUGS

None

EXAMPLES

Obtain time-averaged data from the virtual instrument RTLA, which is part of the RETE
instrument/experiment, which is part of the TSS-1 mission, which is identified with the TSS
project.

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_FLOAT *ret_data, *ret_frac;
SDDAS_LONG *start_time_sec, *start_time_nano, *end_time_sec, *end_time_nano;
SDDAS_LONG *bpix, *epix;
SDDAS_SHORT *start_time_yr, *start_time_day, *end_time_yr, *end_time_day;
SDDAS_SHORT status, *sen_numbers, num_sen, *num_units, data_block;
SDDAS_CHAR *ret_bin, hdr_change, *buf_stat;
void *idf_data_ptr;

status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

fill_discontinuous_data (2R) fill_discontinuous_data (2R)

 234 December 28, 2012

status = create_idf_data_structure (&idf_data_ptr);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by create_idf_data_structure routine.\n",
 status);
 exit (-1);
 }

status = fill_discontinuous_data (data_key, "", vnum, idf_data_ptr, &sen_numbers,
 &ret_data, &ret_frac, &ret_bin, &bpix, &epix, &buf_stat,
 &num_sen, &num_units, &data_block, &start_time_yr,
 &start_time_day,&start_time_sec, &start_time_nano, &end_time_yr,
 &end_time_day,&end_time_sec, &end_time_nano, &hdr_change,
 255);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by fill_discontinuous_data routine.\n", status);
 exit (-1);
 }

fill_mode_data (2R) fill_mode_data (2R)

 235 December 28, 2012

FILL_MODE_DATA
function - returns time-averaged buffers for instrument status (mode) data

SYNOPSIS

#include "libtrec_idfs.h"
#include "ret_codes.h"
#include "user_defs.h"

SDDAS_SHORT fill_mode_data (SDDAS_ULONG data_key,
 SDDAS_CHAR *exten, SDDAS_USHORT version,
 void *idf_data_ptr, SDDAS_SHORT **ret_modes,
 SDDAS_FLOAT **ret_data, SDDAS_FLOAT **ret_frac,
 SDDAS_CHAR **bin_stat, SDDAS_LONG **bpix,
 SDDAS_LONG **epix, SDDAS_CHAR **ret_stat,
 SDDAS_SHORT *num_modes, SDDAS_SHORT **num_units,
 SDDAS_SHORT *block_size, SDDAS_SHORT **stime_yr,
 SDDAS_SHORT **stime_day, SDDAS_LONG **stime_sec,
 SDDAS_LONG **stime_nano, SDDAS_SHORT **etime_yr,
 SDDAS_SHORT **etime_day, SDDAS_LONG **etime_sec,
 SDDAS_LONG **etime_nano, SDDAS_CHAR *hdr_change,
 SDDAS_UCHAR exclude_dqual)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file names when

default files are not to be used, otherwise a null string
version - IDFS data set identification number which allows for

multiple openings of the same data set
idf_data_ptr - pointer to the idf_data structure that temporarily holds

sensor data and pertinent ancillary data for the data set of
interest

ret_modes - an array which holds the instrument status (mode) bytes for
which data is returned

- the array is initialized to -1 in all elements;
 valid mode numbers start with 0

ret_data - pointer to the data being returned (data for all modes
processed)

ret_frac - pointer to the normalization factors for the data being returned
bin_stat - pointer to status flags which are associated with each data bin

returned
0 - no data has been placed into the data bin being

processed
1 - data has been placed into the data bin being

processed
bpix - pointer to the starting pixel location for the data buffers

returned

fill_mode_data (2R) fill_mode_data (2R)

 236 December 28, 2012

epix - pointer to the ending pixel location for the data buffers
returned

ret_stat - pointer to the status of each of the data buffers being returned
UNTOUCHED_BUFFER - no data has ever been

placed into the buffer
FREE_BUFFER - no data has been placed

into the buffer being
processed (ready for re-
use)

PARTIAL_WORKING - data is being acquired
into the buffer but is not
ready for processing

BUFFER_READY - - data has been acquired
into the buffer and is
ready for processing

num_modes - the number of elements in the ret_modes array
num_units - an array holding the number of data sets to bypass in order to

get to the data for the instrument status (mode) value being
processed

block_size - the number of data values returned in a data buffer
stime_yr - pointer to the start time year values for the data buffers

returned
stime_day - pointer to the start time day of year values for the data buffers

returned
stime_sec - pointer to the start time of day values (in seconds) for the data

buffers returned
stime_nano - pointer to the start time of day residuals (in nanoseconds) for

the data buffers returned
etime_yr - pointer to the end time year values for the data buffers

returned
etime_day - pointer to the end time day of year values for the data buffers

returned
etime_sec - pointer to the end time of day values (in seconds) for the data

buffers returned
etime_nano - pointer to the end time of day residuals (in nanoseconds) for

the data buffers returned
hdr_change - flag which indicates a header change occurred while

processing the data
0 - a header change was not encountered

during the processing of the data
1 - a header change was encountered

during the processing of the data
exclude_dqual - data is to be excluded if the d_qual flag associated with the

data is set to the value specified
fill_mode_data - routine status (see TABLE 1)

fill_mode_data (2R) fill_mode_data (2R)

 237 December 28, 2012

TABLE 1. Status Codes Returned for FILL_MODE_DATA

STATUS CODE EXPLANATION OF STATUS
FILL_MODE_NOT_FOUND the requested data_key, exten, version combination has no memory

allocated for processing (user did not call file_open for this combination)
FILL_MODE_FILE_OPEN the user did not request mode data processing when file_open was called
FILL_MODE_INFO_DUP the requested data_key, exten, version combination has no memory

allocated for the instrument status information
MODES_NOT_REQUESTED the user did not call fill_mode_info for this combination
FILL_MODE_BASE_TIME_MISSING the time interval information has not been set (user did not call

set_time_values for this combination)
FILL_MODE_ARRAY_MALLOC no memory for structure which hold information pertinent to the time-

averaged data
ALLOC_MODE_INFO_MALLOC no memory for data buffer information
MODE_UNITS_MALLOC no memory to hold the various data levels for the data buffers
MODE_UNITS_REALLOC no memory for expansion of space to hold the various data levels for the

data buffers
MODE_DATA_MALLOC no memory for data buffers
FILL_WITH_SWEEP_MODE The modules fill_mode_data and sweep_mode_data cannot be used

interchangeably for the same data key, extension, version combination
NO_EMPTY_BUFFERS no spare buffers for data accumulation
 Error codes returned by read_drec ()
 Error codes returned by convert_to_units ()
ALL_OKAY routine terminated successfully

DESCRIPTION

Fill_mode_data is the IDFS time-averaging data read routine, retrieving instrument status
(mode) data for the time duration being processed. The data set of interest is referenced
through the key value data_key which can be created using the get_data_key module.
Fill_mode_data processes instrument status data only. If sensor-specific data is desired,
that is, sensor, sweep step, calibration, data quality, pitch angle, azimuthal angle, spacecraft
potential data and / or background data, the user should use the fill_data /
fill_discontinuous_data routine(s).

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

The parameter idf_data_ptr is a pointer to the structure that is to hold all data pertinent to
the data set being processed. The structure is created and the address to this structure is
returned when a call to the create_idf_data_structure routine is made. The user also has
the option of calling the module create_data_structure, which determines what type of
data structure is needed for the IDFS data set of interest. In most cases, one data structure is

fill_mode_data (2R) fill_mode_data (2R)

 238 December 28, 2012

sufficient to process any number of distinct data sets. However, if more than one structure
is needed, the user may call the create_idf_data_structure routine N times to create N
instances of the idf_data structure. The user must keep track of which pointer to send to
the IDFS routines that utilize this structure.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable SER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

This routine will process data one sweep at a time, placing the data into buffers which hold
data that is accumulated over a specified time interval. Once the time interval has been
processed, the routine will return the data buffers and a status value for each buffer which
indicates when the buffer is ready for the user to retrieve. The user must call the module
set_time_values before the fill_mode_data module can be called since the
set_time_values module is used to specify the base time value and reference location and
the time interval (delta) to use to accumulate the data. If the fill_mode_data routine
determines that the set_time_values module has not been called, an error code is returned
to the user.

Along with the data being returned, there is a starting location and an ending location that is
returned for each of the data buffers. The user may use these values as references to the
base location specified in the call to the set_time_values module. That is, given a base time
value, a time interval and a reference location, the fill_mode_data routine will return the
location of data with respect to time. The user may chose to ignore these values or may use
these locations to plot data along an axis that is scaled with respect to time.

There are a constant number of data buffers that are used by the fill_mode_data module.
This number is defined as NUM_BUFFERS in the user_defs.h file. This file is described
in section 1H of the IDFS Programmers Manual. These data buffers are utilized in a cyclic
nature, with buffer 0 being re-used once buffer NUM_BUFFERS-1 has been filled. The
data buffers that are ready to be processed are flagged with the status value
BUFFER_READY. For each buffer, there are N many sub-buffers which hold the data in
each of the requested data levels or units. The user must process the data contained within
these buffers before the next call to the fill_mode_data routine is made since the module
will clear out these buffers for re-use. This holds true even when an LOS_STATUS or
NEXT_FILE_STATUS status code is returned. The data values must be normalized using
the normalization factors returned along with the data. Since the buffers are cyclic, the user
may wish to keep a variable indicating the last buffer number processed so that the user can
start at the time sample left off from the previous call to the fill_mode_data routine at the

fill_mode_data (2R) fill_mode_data (2R)

 239 December 28, 2012

next call. It is important to note that there is one status flag per data buffer that is used by
all instrument status values.

In order to utilize the fill_mode_data routine, the user must select the units to be returned
and the data cutoff values to be applied by calling the fill_mode_info module prior to
calling the fill_mode_data module. The user should make one call to the fill_mode_info
module for each instrument status byte that is to be retrieved for each units/data cutoff
combination selected. If the fill_mode_data routine determines that the fill_mode_info
module was never called, an error code is returned.

ERRORS

All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

file_open 1R
read_drec 1R
convert_to_units 1R
set_time_values 2R
fill_data 2R
fill_discontinuous_data 2R
fill_mode_info 2R
get_data_key 1R
get_version_number 1R
mode_units_index 1R
create_data_structure 1R
create_idf_data_structure 1R
ret_codes 1H
user_defs 1H
libtrec_idfs 2H

BUGS

None

EXAMPLES

Obtain time-averaged instrument status values from the virtual instrument RTLA, which is
part of the RETE instrument/experiment, which is part of the TSS-1 mission, which is
identified with the TSS project.

#include "libtrec_idfs.h"
#include "ret_codes.h"

fill_mode_data (2R) fill_mode_data (2R)

 240 December 28, 2012

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_FLOAT *ret_data, *ret_frac;
SDDAS_LONG *start_time_sec, *start_time_nano, *end_time_sec, *end_time_nano;
SDDAS_LONG *bpix, *epix;
SDDAS_SHORT *start_time_yr, *start_time_day, *end_time_yr, *end_time_day;
SDDAS_SHORT status, *mode_numbers, num_modes, *num_units, data_block;
SDDAS_CHAR *ret_bin, hdr_change, *buf_stat;
void *idf_data_ptr;

status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

status = create_idf_data_structure (&idf_data_ptr);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by create_idf_data_structure routine.\n", status);
 exit (-1);
 }

status = fill_mode_data (data_key, "", vnum, idf_data_ptr, &mode_numbers,
 &ret_data, &ret_frac, &ret_bin, &bpix, &epix, &buf_stat,
 &num_modes, &num_units, &data_block, &start_time_yr,
 &start_time_day, &start_time_sec, &start_time_nano,
 &end_time_yr, &end_time_day,&end_time_sec, &end_time_nano,
 &hdr_change, 255);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by fill_mode_data routine.\n", status);
 exit (-1);
 }

fill_mode_info (2R) fill_mode_info (2R)

 241 December 28, 2012

FILL_MODE_INFO
function - specifies the data cutoff values and units to be returned for the specified
instrument status (mode) value

SYNOPSIS

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT fill_mode_info (SDDAS_ULONG data_key, SDDAS_CHAR *exten,
 SDDAS_USHORT version, SDDAS_SHORT mode_val,
 SDDAS_FLOAT min, SDDAS_FLOAT max,
 SDDAS_CHAR num_tbls,
 SDDAS_CHAR *tbls_to_apply,

 SDDAS_LONG *tbl_oper)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file names when

default files are not to be used, otherwise a null string
version - IDFS data set identification number which allows for multiple

openings of the same data set
mode_val - the instrument status (mode) value of interest
min - the lower cutoff value for data that are to be put into the data

buffers, specified in terms of the units desired
max - the upper cutoff value for data that are to be put into the data

buffers, specified in terms of the units desired
num_tbls - the number of elements specified in the tbls_to_apply and

tbl_oper parameters
tbls_to_apply - the tables that are to be applied in order to derive the desired

units
tbl_oper - the operations that are to be applied to the specified tables in

order to derive the desired units
fill_mode_info - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for FILL_MODE_INFO

STATUS CODE EXPLANATION OF STATUS

MODE_INFO_NOT_FOUND the requested data_key, exten, version combination has no memory allocated for
processing (user did not call file_open for this combination)

MODE_FILE_OPEN the user did not request mode data processing when file_open was called
MODE_INFO_DUP the requested data_key, exten, version combination has no memory allocated for

the instrument status information
MODE_INFO_NO_MODES there are no instrument status (mode) values defined for the data set
MODE_INFO_MALLOC no memory for structures which hold mode specific information
MODE_INFO_REALLOC no memory for expansion of structures which hold mode specific information
MODE_INFO_BASE_MALLOC no memory for expansion of the min/max values for the modes being processed
MODE_INFO_TBL_MALLOC no memory for table number / table operation information
MODE_INFO_BASE_REALLOC no memory for expansion of the min/max values for the modes being processed

fill_mode_info (2R) fill_mode_info (2R)

 242 December 28, 2012

STATUS CODE EXPLANATION OF STATUS
ALL_OKAY routine terminated successfully

DESCRIPTION

Fill_mode_info is the IDFS routine that specifies which instrument status (mode) values are
being returned by the fill_mode_data / sweep_mode_data module. The data set of interest
is referenced through the key value data_key which can be created using the get_data_key
module. The instrument status (mode) values are not sensor-specific, that is, they pertain to
all sensors within the sensor set. If sensor-specific data is to be retrieved, the user should
use the fill_sensor_info routine to specify the data that is to be returned by the fill_data /
fill_discontinuous_data / sweep_data / sweep_discontinuous_data / spin_data /
spin_data_pixel modules. The fill_mode_info module must be called prior to calling the
fill_mode_data / sweep_mode_data routine; otherwise, an error code will be returned.
The user should make one call to the fill_mode_info module for each instrument status
value that is to be processed for each units/data cutoff combination selected.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

ERRORS

All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO
file_open 1R
fill_mode_data 2R

fill_mode_info (2R) fill_mode_info (2R)

 243 December 28, 2012

sweep_mode_data 2R
fill_sensor_info 2R
get_data_key 1R
get_version_number 1R
ret_codes 1H
libtrec_idfs 2H

BUGS

None

EXAMPLES

Specify raw units, with cutoff values of 0 and 5 for instrument status byte 1 from the virtual
instrument RTLA, which is part of the RETE instrument/experiment, which is part of the
TSS-1 mission, which is identified with the TSS project.

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_FLOAT mode_min, mode_max;
SDDAS_LONG *tbl_oper = NULL;
SDDAS_SHORT status, mode_val;
SDDAS_CHAR num_tbls, *tbls_to_apply = NULL;

mode_val = 1;
mode_min = 0;
mode_max = 5;
num_tbls = 0;
status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

status = fill_mode_info (data_key, "", vnum, mode_val, mode_min, mode_max,
 num_tbls, tbls_to_apply, tbl_oper);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d from fill_mode_info routine.\n", status);
 exit (-1);
 }

fill_mode_info (2R) fill_mode_info (2R)

 244 December 28, 2012

fill_sensor_info (2R) fill_sensor_info (2R)

 245 December 28, 2012

FILL_SENSOR_INFO
function - specifies the data cutoff values, data type and units to be returned for the
specified sensor

SYNOPSIS

#include "libtrec_idfs.h"
#include "ret_codes.h"
#include "user_defs.h"

SDDAS_SHORT fill_sensor_info (SDDAS_ULONG data_key, SDDAS_CHAR *exten,
 SDDAS_USHORT version, SDDAS_SHORT sensor,
 SDDAS_FLOAT min, SDDAS_FLOAT max,
 SDDAS_CHAR num_tbls, SDDAS_CHAR *tbls_to_apply,
 SDDAS_LONG *tbl_oper, SDDAS_CHAR data_type,
 SDDAS_CHAR cal_set)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file names when

default files are not to be used, otherwise a null string
version - IDFS data set identification number which allows for multiple

openings of the same data set
sensor - sensor identification number
min - the lower cutoff value for data that are to be put into the data

buffers, specified in terms of the units desired
max - the upper cutoff value for data that are to be put into the data

buffers, specified in terms of the units desired
num_tbls - the number of elements specified in the tbls_to_apply and

tbl_oper parameters
tbls_to_apply - tables that are to be applied in order to derive the desired units
tbl_oper - the operations that are to be applied to the specified tables in

order to derive the desired units
data_type - the type of data being requested

1 - sensor data (SENSOR)
2 - sweep step data (SWEEP_STEP)
3 - calibration data (CAL_DATA)
5 - data quality data (D_QUAL)
6 - pitch angle data PITCH_ANGLE)
7 - start azimuthal angle data

(START_AZ_ANGLE)
8 - stop azimuthal angle data

(STOP_AZ_ANGLE)
 9 - spacecraft potential data

(SC_POTENTIAL)
10 - background data

(BACKGROUND)

fill_sensor_info (2R) fill_sensor_info (2R)

 246 December 28, 2012

cal_set - the calibration set from which requested calibration data
(CAL_DATA) is to be retrieved
- If calibration data is not being requested, this

parameter is not utilized and it is suggested that the
user pass a value of zero for this parameter.

fill_sensor_info - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for FILL_SENSOR_INFO

STATUS CODE EXPLANATION OF STATUS
FILL_SEN_NOT_FOUND the requested data_key, exten, version combination has no memory allocated for

processing (user did not call file_open for this combination)
FILL_SEN_MODE_TYPE instrument status (mode) data is not supported by the fill_sensor_info routine
FILL_SEN_MALLOC no memory for structures which hold sensor specific information
FILL_SEN_REALLOC no memory for expansion of structures which hold sensor specific information
FILL_SEN_BASE_MALLOC no memory for min/max values for the sensors being processed
FILL_SEN_BASE_REALLOC no memory for expansion of the min/max values for the sensor being processed
FILL_SEN_TBL_MALLOC no memory for table number / table operation information
ALL_OKAY routine terminated successfully

DESCRIPTION

Fill_sensor_info is the IDFS routine that specifies what data is being returned by the IDFS
routines that return time-averaged data (fill_data / fill_discontinuous_data), sample-
averaged data (sweep_data / sweep_discontinuous_data) or spin-averaged data
(spin_data / spin_data_pixel) . The data set of interest is referenced through the key value
data_key which can be created using the get_data_key module. The fill_sensor_info
module should be used for sensor-specific data only, that is, for sensor, sweep step,
calibration, data quality, pitch angle, azimuthal angle, spacecraft potential and background
data. If the instrument status (mode) data is to be retrieved, the user should use the
fill_mode_info routine to specify which status bytes are to be returned by the
fill_mode_data module.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files

fill_sensor_info (2R) fill_sensor_info (2R)

 247 December 28, 2012

must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

If it has been determined that the fill_sensor_info module has not been called, the default
mode for the time-averaging, sample-averaging, and spin-averaging routines is to return
sensor data in raw units (no tables applied) for each of the sensors processed, with data
cutoff values set at -3.0e38 (VALID_MIN) and 3.0e38 (VALID_MAX). The user may
specify the type of data, the units to be returned and the data cutoff values to be applied by
calling the fill_sensor_info module prior to calling the time-averaging, sample-averaging,
or spin-averaging module. The user should make one call to the fill_sensor_info module
for each sensor that is to be processed for each data type/units/data cutoff combination
selected.

ERRORS

All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

file_open 1R
fill_mode_info 2R
fill_data 2R
fill_discontinuous_data 2R
sweep_data 2R
sweep_discontinuous_data 2R
spin_data 2R
spin_data_pixel 2R
get_data_key 1R
get_version_number 1R
ret_codes 1H
user_defs 1H
libtrec_idfs 2H

BUGS

None

EXAMPLES

Specify raw units, with cutoff values of 10 and 25 for SENSOR data for all defined sensors
from the virtual instrument RTLA, which is part of the RETE instrument/experiment, which
is part of the TSS-1 mission, which is identified with the TSS project. Assume that there
are 3 sensors applicable to this virtual instrument.

fill_sensor_info (2R) fill_sensor_info (2R)

 248 December 28, 2012

#include "libtrec_idfs.h"
#include "ret_codes.h"
#include "user_defs.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
register SDDAS_SHORT sensor;
SDDAS_FLOAT sen_min, sen_max;
SDDAS_LONG *tbl_oper = NULL;
SDDAS_SHORT status;
SDDAS_CHAR data_type, num_tbls, *tbls_to_apply = NULL;

data_type = SENSOR;
sen_min = 10.0;
sen_max = 25.0;
num_tbls = 0;

status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

for (sensor = 0; sensor < 3; ++sensor)
 {
 status = fill_sensor_info (data_key, "", vnum, sensor, sen_min, sen_max,
 num_tbls, tbls_to_apply, tbl_oper, data_type, 0);
 if (status != ALL_OKAY)
 {
 printf ("\n Error %d from fill_sensor_info routine.\n", status);
 exit (-1);
 }
 }

fill_theta_matrix (2R) fill_theta_matrix (2R)

 249 December 28, 2012

FILL_THETA_MATRIX
function - fills in the data matrix that is used to collapse over the theta and scan dimensions

SYNOPSIS

#include "libtrec_idfs.h"
#include "ret_codes.h"
#include "user_defs.h"

SDDAS_SHORT fill_theta_matrix (SDDAS_ULONG data_key, SDDAS_CHAR *exten,
 SDDAS_USHORT version, SDDAS_SHORT num_sen,
 SDDAS_SHORT *ret_sensors, SDDAS_FLOAT *ret_data,
 SDDAS_FLOAT *ret_frac, SDDAS_CHAR *bin_stat,
 SDDAS_SHORT *num_units, SDDAS_CHAR cur_buf,
 SDDAS_SHORT sen_units)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file names when

default files are not to be used, otherwise a null string
version - IDFS data set identification number which allows for multiple

openings of the same data set
num_sen - the number of elements in the ret_sensors array
ret_sensors - an array which holds the sensor number(s) for which data is

returned
- the array is initialized to -1 in all elements; valid
 sensor numbers start with 0

ret_data - pointer to the data being returned (data for all sensors
processed)

ret_frac - pointer to the normalization factors for the data being returned
bin_stat - pointer to status flags which are associated with each data bin

returned
0 - no data has been placed into the data bin

 being processed
1 - data has been placed into the data bin being

 processed
num_units - an array holding the number of data sets to bypass in order to

get to the data for the sensor being processed
cur_buf - the current buffer being processed (number between 0 and

NUM_BUFFERS-1)
sen_units - the number of units or data levels defined for the sensor in

question
fill_theta_matrix - routine status (see TABLE 1)

fill_theta_matrix (2R) fill_theta_matrix (2R)

 250 December 28, 2012

TABLE 1. Status Code Returned for FILL_THETA_MATRIX

STATUS CODE EXPLANATION OF STATUS
FILL_THETA_NOT_FOUND the requested data_key, exten, version combination has no memory allocated for

processing (user did not call file_open for this combination)
FILL_THETA_COLLAPSE no memory has been allocated to hold the collapsing information (user did not call

set_collapse_info for this combination)
THETA_DIFF_UNITS the sensor do not process the same number of data levels
ALL_OKAY routine terminated successfully

DESCRIPTION

Fill_theta_matrix is the IDFS routine which assembles a data matrix when data is to be
reduced in either the theta and/or scan dimensions. If the user is also collapsing the data
over the charge, mass and/or phi dimensions, there is no need to call this module. The data
matrix for data reduction will be acquired within the call to the time-averaging module
(fill_data / fill_discontinuous_data), the sample-averaging module (sweep_data /
sweep_discontinuous_data) or the spin-averaging module (spin_data / spin_data_pixel).
The data set of interest is referenced through the key value data_key which can be created
using the get_data_key module. This module can not be used in conjunction with the
fill_mode_data / sweep_mode_data module since dimensionality is associated with
sensor-specific data and instrument status data is not sensor-specific.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

The time-averaging or sample-averaging routine will return a constant number of data
buffers. This number is defined as NUM_BUFFERS in the user_defs.h file. This file is
described in section 1H of the IDFS Programmers Manual. These data buffers are utilized
in a cyclic nature, with buffer 0 being re-used once buffer NUM_BUFFERS-1 has been

fill_theta_matrix (2R) fill_theta_matrix (2R)

 251 December 28, 2012

filled. If the user is collapsing the data over the theta or scan dimension, the user must call
this module in conjunction with the collapse_dimensions module, processing one buffer at
a time. The user should process only those buffers that are flagged with the status value
BUFFER_READY. All sensors that contain data in the specified buffer are processed, as
well as each different data level or unit. Since the buffers are cyclic, the user may wish to
keep a variable indicating the last buffer number processed so that the user can start at the
time sample left off from the previous call to the time-averaging or sample-averaging
routine at the next call.

The spin-averaging routine will return a single data buffer. If the user is collapsing the data
over the theta or scan dimension, the user must call this module in conjunction with the
collapse_dimensions module. All sensors that contain data in the specified buffer are
processed, as well as each different data level or unit.

The call to the fill_theta_matrix routine should be called once for each buffer processed.
The user may wish to collapse the data over different dimensions and ranges, in which case,
there would be multiple calls to the collapse_dimensions module but there should be just
one call to the fill_theta_matrix routine.

The parameter sen_units holds the number of units or data levels defined for the sensors.
This value is used as an index to get to the first buffer returned by the time-averaging,
sample-averaging, or spin-averaging routine for each sensor. The value for this parameter
can be retrieved by calling the module units_index, with the next to the last argument from
the end holding the value to be passed to this module. The parameters num_sen,
ret_sensors, ret_data, ret_frac, bin_stat and num_units are returned from the call to the
time-averaging, sample-averaging, or spin-averaging routine.

ERRORS

All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

file_open 1R
fill_data 2R
fill_discontinuous_data 2R
sweep_data 2R
sweep_discontinuous_data 2R
spin_data 2R
spin_data_pixel 2R
collapse_dimensions 2R
set_collapse_info 2R
units_index 2R
get_data_key 1R
get_version_number 1R

fill_theta_matrix (2R) fill_theta_matrix (2R)

 252 December 28, 2012

ret_codes 1H
user_defs 1H
libtrec_idfs 2H

BUGS

None

EXAMPLES

In order to produce a line plot from the RTLA virtual instrument, data must be collapsed
over a frequency range. Assuming that a single data level (raw units) is being returned, fill
the data matrix used for data reduction and collapse the data over the two ranges for each
buffer that is ready to be processed. The virtual instrument RTLA is part of the RETE
instrument/experiment, which is part of the TSS-1 mission, which is identified with the TSS
project.

#include "libtrec_idfs.h"
#include "ret_codes.h"
#include "user_defs.h"
#define DUMMY_VAL 0

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_FLOAT *ret_data, *ret_frac, *data_ptr, start[6], stop[6];
SDDAS_LONG *start_time_sec, *start_time_nano, *end_time_sec, *end_time_nano;
SDDAS_LONG *bpix, *epix;
SDDAS_SHORT *start_time_yr, *start_time_day, *end_time_yr, *end_time_day;
SDDAS_SHORT status, *sen_numbers, num_sen, *num_units, data_block;
SDDAS_CHAR *ret_bin, hdr_change, *buf_stat, cur_buf, buf_num, dimen[6];
static SDDAS_CHAR which_buf = 0;
void *idf_data_ptr;

dimen[0] = DIMEN_ON;
start[0] = 0.16;
stop[0] = 0.9;
start[1] = stop[1] = 0.0;
start[2] = stop[2] = 0.0;
start[3] = stop[3] = 0.0;
start[4] = stop[4] = 0.0;
start[5] = stop[5] = 0.0;
dimen[1] = dimen[2] = dimen[3] = dimen[4] = dimen[5] = DIMEN_OFF;

status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);

fill_theta_matrix (2R) fill_theta_matrix (2R)

 253 December 28, 2012

 }
get_version_number (&vnum);

status = create_idf_data_structure (&idf_data_ptr);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by create_idf_data_structure routine.\n", status);
 exit (-1);
 }

status = fill_data (data_key, "", vnum, idf_data_ptr, &sen_numbers, &ret_data, &ret_frac,
 &ret_bin, &bpix, &epix, &buf_stat, &num_sen, &num_units,
 &data_block, &start_time_yr, &start_time_day, &start_time_sec,
 &start_time_nano, &end_time_yr, &end_time_day, &end_time_sec,
 &end_time_nano, &hdr_change, 255);
if (status >= 0)
 {
 cur_buf = which_buf;
 for (buf_num = 0; buf_num < NUM_BUFFERS; ++buf_num)
 {
 if (*(buf_stat + cur_buf) == BUFFER_READY)
 {
 status = fill_theta_matrix (data_key, "", vnum, num_sen, sen_numbers, ret_data,
 ret_frac, ret_bin, num_units, cur_buf, 1);
 if (status != ALL_OKAY)
 {
 printf ("\n Error %d from fill_theta_matrix routine.\n", status);
 exit (-1);
 }

 status = collapse_dimensions (data_key, "", vnum, 1, dimen, start, stop,
 STRAIGHT_AVG, DUMMY_VAL, &data_ptr, 0, 1, 3,
 0.0, 1, 1, 0, 0, 1, cur_buf);
 if (status != ALL_OKAY)
 {
 printf ("\n Error %d from collapse_dimensions routine.\n", status);
 exit (-1);
 }
 printf ("\n data value = %f", *data_ptr);

 start[0] = 0.3;
 stop[0] = 0.6;
 status = collapse_dimensions (data_key, "", vnum, 1, dimen, start, stop,
 STRAIGHT_AVG, DUMMY_VAL, &data_ptr, 0, 1,
 3, 0.0, 1, 1, 0, 1, 1, cur_buf);
 if (status != ALL_OKAY)

fill_theta_matrix (2R) fill_theta_matrix (2R)

 254 December 28, 2012

 {
 printf ("\n Error %d from collapse_dimensions routine.\n", status);
 exit (-1);
 }
 printf ("\n data value = %f", *data_ptr);

 which_buf = (cur_buf + 1) % NUM_BUFFERS;
 }
 cur_buf = (cur_buf + 1) % NUM_BUFFERS;
 }
 }

mode_units_index (2R) mode_units_index (2R)

 255 December 28, 2012

MODE_UNITS_INDEX
function - returns index values to access the data returned by the fill_mode_data /
sweep_mode_data module for the cutoff / units combination specified

SYNOPSIS

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT mode_units_index (SDDAS_ULONG data_key, SDDAS_CHAR *exten,
 SDDAS_USHORT version, SDDAS_SHORT mode_val,
 SDDAS_FLOAT min, SDDAS_FLOAT max,
 SDDAS_CHAR num_tbls, SDDAS_CHAR *tbls_to_apply,
 SDDAS_LONG *tbl_oper, SDDAS_SHORT *units_ind,
 SDDAS_SHORT *num_units)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file names when

default files are not to be used, otherwise a null string
version - IDFS data set identification number which allows for multiple

openings of the same data set
mode_val - the instrument status (mode) value of interest
min - the lower cutoff value for data that are to be put into the data

buffers, specified in terms of the units desired.
max - the upper cutoff value for data that are to be put into the data

buffers, specified in terms of the units desired.
num_tbls - the number of elements specified in the tbls_to_apply and

tbl_oper parameters
tbls_to_apply - the tables that are to be applied in order to derive the desired

units
tbl_oper - the operations that are to be applied to the specified tables in

order to derive the desired units
units_ind - index value returned to access the correct sub-buffer returned

from the fill_mode_data / sweep_mode_data routine for the
cutoff/units combination requested

num_units - the number of units or data levels defined for the instrument
status (mode) value in question (used as an index to get to the
first buffer returned by the fill_mode_data /
sweep_mode_data routine for the mode in question)

mode_units_index - routine status (see TABLE 1)

mode_units_index (2R) mode_units_index (2R)

 256 December 28, 2012

TABLE 1. Status Codes Returned for MODE_UNITS_INDEX

STATUS CODE EXPLANATION OF STATUS
MODE_UNITS_IND_NOT_FOUND the requested data_key, exten, version combination has no memory

allocated for processing (user did not call file_open for this combination)
MODE_UNITS_FILE_OPEN the user did not request mode data processing when file_open was called
MODE_UNITS_INFO_DUP the requested data_key, exten, version combination has no memory

allocated for the instrument status information
MODE_UNITS_NO_MODE the requested instrument status (mode) value was not found amongst the

defined cutoff/units combinations (user did not call fill_mode_info for this
combination

MODE_UNITS_NO_MATCH the cutoff/units combination requested was not found for the specified
instrument status (mode) value

ALL_OKAY routine terminated successfully

DESCRIPTION

Mode_units_index is the IDFS routine that returns index values that are used to access the
data buffers returned by the fill_mode_data / sweep_mode_data routine to retrieve the
data for the instrument status (mode) value, cutoff/units combination specified. The data set
of interest is referenced through the key value data_key which can be created using the
get_data_key module. The instrument status (mode) values are not sensor-specific, that is,
they pertain to all sensors within the sensor set. If sensor-specific data is also being
processed, the user should use the units_index routine to retrieve index values to access the
data buffers returned by the fill_data / fill_discontinuous_data / sweep_data /
sweep_discontinuous_data / spin_data / spin_data_pixel routines.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

mode_units_index (2R) mode_units_index (2R)

 257 December 28, 2012

The user may elect to call the mode_units_index routine every time a return from the
fill_mode_data / sweep_mode_data routine is made or may call the mode_units_index
routine once for each instrument status (mode) value, cutoff/units combination requested
and save the index values into variables for later usage. In either case, the call(s) to the
mode_units_index routine must be made after ALL calls to the fill_mode_info routine
have been made.

ERRORS

All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

file_open 1R
fill_mode_data 2R
sweep_mode_data 2R
fill_mode_info 2R
units_index 2R
get_data_key 1R
get_version_number 1R
ret_codes 1H
libtrec_idfs 2H

BUGS

None

EXAMPLES

Retrieve the index values to access data that is returned for instrument status byte 1 from the
virtual instrument RTLA, which is part of the RETE instrument/experiment, which is part
of the TSS-1 mission, which is identified with the TSS project. Assume that there is one
table applicable and the cutoff values of 0 and 5 are to be used.

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_FLOAT mode_min, mode_max;
SDDAS_LONG tbl_oper[1];
SDDAS_SHORT uind_base, status, mode_units, mode_val;
SDDAS_CHAR tbls_to_apply[1], num_tbls;

mode_min = 0.0;
mode_max = 5.0;
mode_val = 1;

mode_units_index (2R) mode_units_index (2R)

 258 December 28, 2012

num_tbls = 1;
tbls_to_apply[0] = 0;
tbl_oper[0] = 0; /* look-up operation */

status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

status = mode_units_index (data_key, "", vnum, mode_val, mode_min, mode_max,
 num_tbls, tbls_to_apply, tbl_oper, &uind_base,
 &mode_units);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by mode_units_index routine.\n", status);
 exit (-1);
 }

number_of_data_bins (2R) number_of_data_bins (2R)

 259 December 28, 2012

NUMBER_OF_DATA_BINS
function - returns the number of data bins created for the data set of interest

SYNOPSIS

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT number_of_data_bins (SDDAS_ULONG data_key,
 SDDAS_CHAR *exten, SDDAS_USHORT version,
 SDDAS_SHORT *num_bins)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file

names when default files are not to be used, otherwise,
a null string

version - IDFS data set identification number which allows for
multiple openings of the same data set

num_bins - the number of data bins created for the data set
number_of_data_bins - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for NUMBER_OF_DATA_BINS

STATUS CODE EXPLANATION OF STATUS
NBINS_NOT_FOUND the requested data_key, exten, version combination has no memory allocated for

processing (user did not call file_open for this combination)
NBINS_NO_BINS no memory has been allocated to hold the binning information (user did not call

set_bin_info for this combination)
ALL_OKAY routine terminated successfully

DESCRIPTION

Number_of_data_bins is the IDFS routine that returns the number of data bins that are
utilized by the IDFS routines that return time-averaged data (fill_data and
fill_discontinuous_data), sample-averaged data (sweep_data and
sweep_discontinuous_data), or spin-averaged data (spin_data and spin_data_pixel). The
creation of the data bins is handled by the call to the set_bin_info module. If the
set_bin_info module has not been called, an error code is returned to the calling module.
The data set of interest is referenced through the key value data_key which can be created
using the get_data_key module.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a

number_of_data_bins (2R) number_of_data_bins (2R)

 260 December 28, 2012

single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

ERRORS
All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

file_open 1R
fill_data 2R
fill_discontinuous_data 2R
sweep_data 2R
sweep_discontinuous_data 2R
spin_data 2R
spin_data_pixel 2R
set_bin_info 2R
get_data_key 1R
get_version_number 1R
ret_codes 1H
libtrec_idfs 2H

BUGS

None

EXAMPLES

Determine the number of data bins created for the SPIA virtual instrument, which is part of
the SPREE instrument/experiment, which is part of the TSS-1 mission, which is identified
with the TSS project. For this example, assume that the module set_bin_info has
previously been called.

number_of_data_bins (2R) number_of_data_bins (2R)

 261 December 28, 2012

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_SHORT status, num_bins;

status = get_data_key ("TSS", "TSS-1", "SPREE", "SPREE", "SPIA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);
.
.
.
status = number_of_data_bins (data_key, "", vnum, &num_bins);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d from number_of_data_bins routine.\n", status);
 exit (-1);
 }

number_of_data_bins (2R) number_of_data_bins (2R)

 262 December 28, 2012

number_of_phi_bins (2R) number_of_phi_bins (2R)

 263 December 28, 2012

NUMBER_OF_PHI_BINS
function - returns the number of phi bins created for the data set of interest

SYNOPSIS

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT number_of_phi_bins (SDDAS_ULONG data_key,
 SDDAS_CHAR *exten, SDDAS_USHORT version,
 SDDAS_SHORT *num_phi_bins)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file

names when default files are not to be used, otherwise,
a null string

version - IDFS data set identification number which allows for
multiple openings of the same data set

num_phi_bins - the number of phi bins created for the data set
number_of_phi_bins - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for NUMBER_OF_PHI_BINS

STATUS CODE EXPLANATION OF STATUS
NPHI_NOT_FOUND the requested data_key, exten, version combination has no memory allocated for

processing (user did not call file_open for this combination)
NPHI_NO_BINS no memory has been allocated to hold the collapsing information (user did not call

set_collapse_info for this combination)
ALL_OKAY routine terminated successfully

DESCRIPTION

Number_of_phi_bins is the IDFS routine that returns the number of phi bins that are
utilized by the IDFS routines that return time-averaged data (fill_data and
fill_discontinuous_data), sample-averaged data (sweep_data and
sweep_discontinuous_data) or spin-averaged data (spin_data and spin_data_pixel). The
creation of the phi bins is handled by the call to the set_collapse_info routine. If the
set_collapse_info module has not been called, an error code is returned to the calling
module. The data set of interest is referenced through the key value data_key which can be
created using the get_data_key module.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a

number_of_phi_bins (2R) number_of_phi_bins (2R)

 264 December 28, 2012

single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

ERRORS
All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

file_open 1R
fill_data 2R
fill_discontinuous_data 2R
sweep_data 2R
sweep_discontinuous_data 2R
spin_data 2R
spin_data_pixel 2R
set_collapse_info 2R
get_data_key 1R
get_version_number 1R
ret_codes 1H
libtrec_idfs 2H

BUGS

None

EXAMPLES

Determine the number of phi bins created for the SPIA virtual instrument, which is part of
the SPREE instrument/experiment, which is part of the TSS-1 mission, which is identified
with the TSS project. For this example, assume that the module set_collapse_info has
previously been called.

number_of_phi_bins (2R) number_of_phi_bins (2R)

 265 December 28, 2012

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_SHORT status, num_phi_bins;

status = get_data_key ("TSS", "TSS-1", "SPREE", "SPREE", "SPIA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);
.
.
.
status = number_of_phi_bins (data_key, "", vnum, &num_phi_bins);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d from number_of_phi_bins routine.\n", status);
 exit (-1);
 }

number_of_phi_bins (2R) number_of_phi_bins (2R)

 266 December 28, 2012

return_center_and_band_ptrs (2R) return_center_and_band_ptrs (2R)

 267 December 28, 2012

RETURN_CENTER_AND_BAND_PTRS
function - returns the address of the center sweep and band width values associated with the
data bins for the specified sensor

SYNOPSIS

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT return_center_and_band_ptrs (SDDAS_ULONG data_key,
 SDDAS_CHAR *exten, SDDAS_USHORT version,
 SDDAS_SHORT sensor, SDDAS_FLOAT **center_ptr,
 SDDAS_FLOAT **low_ptr, SDDAS_FLOAT **high_ptr)

ARGUMENTS
data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file

names when default files are not to be used, otherwise
a null string

version - IDFS data set identification number which allows for
multiple openings of the same data set

sensor - sensor identification number
center_ptr - pointer to the location that holds the center sweep

values
low_ptr - pointer to the location that holds the lower bands for

non-contiguous bands or all band widths for
contiguous bands

high_ptr - pointer to the location that holds the upper bands for
non-contiguous bands

return_center_and_band_ptrs - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for RETURN_CENTER_AND_BAND_PTRS

STATUS CODE EXPLANATION OF STATUS

RET_CENTER_NOT_FOUND the requested data_key, exten, version combination has no memory allocated for
processing (user did not call file_open for this combination)

RET_CBPTR_NOT_FOUND no memory has been allocated to hold the binning information (user did not call
set_bin_info for this combination)

RET_CBPTR_NO_SENSOR the specified sensor is not flagged as a sensor to be process for this data set
ALL_OKAY routine terminated successfully

DESCRIPTION

Return_center_and_band_ptrs is the IDFS routine that returns pointers to the center and
band width sweep step values for the specified sensor, which have been created by a call to
the center_and_band_values module. For any given virtual instrument, there may be one
set of sweep step values to be used by all sensors or there may be a set of sweep step values
defined for each individual sensor. The sweep step values are used by the IDFS routines
that return time-averaged data (fill_data / fill_discontinuous_data), sample-averaged data

return_center_and_band_ptrs (2R) return_center_and_band_ptrs (2R)

 268 December 28, 2012

(sweep_data / sweep_discontinuous_data) or spin-averaged data (spin_data /
spin_data_pixel). The data set of interest is referenced through the key value data_key
which can be created using the get_data_key module.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

The contents of the memory locations returned by this module should NOT be altered since
the calculated center/band width values are used by the time-averaging, sample-averaging,
or spin-averaging routine when processing the data. If the returned values need to be
modified, for example, to take the log of the values, the user should allocate space to hold
the values, copy the values into this space and modify the values there.

The module returns two possible pointers for the location(s) that hold the lower and upper
band width values. In the case where the bands are non-contiguous, both the low_ptr and
high_ptr will reference memory locations that hold the band width values. In the case
where the bands are contiguous, there is no need to hold separate upper and lower values –
the upper limit of the current band is the lower limit of the next band. In this case, one extra
memory location is allocated, the high_ptr pointer is set to nil or 0 and low_ptr is set to
reference the location that holds the band width values.

ERRORS
All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

return_center_and_band_ptrs (2R) return_center_and_band_ptrs (2R)

 269 December 28, 2012

SEE ALSO
file_open 1R
fill_data 2R
fill_discontinuous_data 2R
sweep_data 2R
sweep_discontinuous_data 2R
spin_data 2R
spin_data_pixel 2R
set_bin_info 2R
center_and_band_values 2R
get_data_key 1R
get_version_number 1R
ret_codes 1H
libtrec_idfs 2H

BUGS

None

EXAMPLES

Print out the center sweep values used for binning the data for sensor 0 for the SPIA virtual
instrument, which is part of the SPREE instrument/experiment, which is part of the TSS-1
mission, which is identified with the TSS project. This code segment assumes that calls to
set_bin_info and center_and_band_values modules have been made.

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
register SDDAS_SHORT bins, num_bins;
SDDAS_FLOAT *center_ptr, *low_ptr, *high_ptr;
SDDAS_SHORT status;

status = get_data_key ("TSS", "TSS-1", "SPREE", "SPREE", "SPIA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);
.
status = number_of_data_bins (data_key, “”, vnum, &num_bins);
if (status != ALL_OKAY)
{
 printf ("\n Error %d from number_of_data_bins routine.\n", status);
 exit (-1);

return_center_and_band_ptrs (2R) return_center_and_band_ptrs (2R)

 270 December 28, 2012

 }

status = return_center_and_band_ptrs (data_key, "", vnum, 0, ¢er_ptr,
 &low_ptr, &high_ptr);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d from return_center_and_band_ptrs routine.\n", status);
 exit (-1);
 }

for (bins = 0; bins < num_bins; ++bins)
 printf ("center sweep value [%d] = %.2f\n", bins, *(center_ptr + bins));

return_phi_ptrs (2R) return_phi_ptrs (2R)

 271 December 28, 2012

RETURN_PHI_PTRS
function - returns the phi bins and the data from the phi data matrix for the specified sensor
for the specified buffer

SYNOPSIS

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT return_phi_ptrs (SDDAS_ULONG data_key, SDDAS_CHAR *exten,
 SDDAS_USHORT version, SDDAS_SHORT sensor,
 SDDAS_FLOAT **ret_data, SDDAS_CHAR cyclic,
 SDDAS_SHORT order, SDDAS_LONG need_filled,
 SDDAS_FLOAT tension, SDDAS_CHAR bin_project,
 SDDAS_SHORT unit_index, SDDAS_SHORT *num_phi,
 SDDAS_FLOAT **phi_bins, SDDAS_SHORT *data_size,

 SDDAS_CHAR cur_buf)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file names when

default files are not to be used, otherwise a null string
version - IDFS data set identification number which allows for multiple

openings of the same data set
sensor - sensor identification number
ret_data - pointer to the data being returned
cyclic - flag indicating if the data is cyclic

0 - data is not cyclic
1 - data is cyclic

order - the order of the fit, i.e. 1, 2, 3, etc.
- This parameter is used if the bin fill method chosen in the
call to the set_bin_info routine is any value other than
NO_BIN_FILL.

need_filled - the number of filled bins needed in order to fill in the missing
data bins

tension - the weighting of the data
bin_project - flag indicating if the data is to be projected into empty bins

beyond the first or last data bin which contains data
0 - do not project the data
1 - project the data

unit_index - index value specifying which data level or unit is to be
returned for the sensor in question

num_phi - the number of phi bins that are being returned
phi_bins - pointer to the location that holds the phi bin values
data_size - the number of data values returned per phi bin
cur_buf - the current buffer being processed (number between 0 and

NUM_BUFFERS-1)

return_phi_ptrs (2R) return_phi_ptrs (2R)

 272 December 28, 2012

return_phi_ptrs - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for RETURN_PHI_PTRS

STATUS CODE EXPLANATION OF STATUS
RET_PHI_NOT_FOUND the requested data_key, exten, version combination has no memory allocated for

processing (user did not call file_open for this combination)
CPTR_RET_PHI no memory has been allocated to hold the collapsing information (user did not call

set_collapse_info for this combination)
NO_RET_PHI the phi bins were disabled by the call to set_collapse_info
ALL_OKAY routine terminated successfully

DESCRIPTION

Return_phi_ptrs is the IDFS routine that returns both the phi band limits and the
corresponding sensor data for a given sensor. The sensor data is acquired by the IDFS
routines that return time-averaged data (fill_data), sample-averaged data (sweep_data), or
spin-averaged data (spin_data / spin_data_pixel). The width of the phi bins was created
using the information specified by the call to the set_collapse_info module. If the
set_collapse_info module has not been called or if the phi bins were disabled by the call to
the set_collapse_info module, an error code is returned to the calling module. The data set
of interest is referenced through the key value data_key which can be created using the
get_data_key module.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

The pointer ret_data references the data for the sensor requested. The data is laid down by
phi bin, with data_size elements being returned per phi bin. The data returned can be
thought of as a 2-dimensional matrix, with data_size rows and num_phi columns. This

return_phi_ptrs (2R) return_phi_ptrs (2R)

 273 December 28, 2012

module must be called after a call to the fill_data / sweep_data / spin_data /
spin_data_pixel routine, which fills in the phi data matrix, has been made. This module
can not be utilized in conjunction with the fill_discontinuous_data / sweep_discontinuous
module since the module can not process data sets with a PHI, MASS and/or CHARGE
dimensionality. The user should process only those buffers that are flagged with the status
value BUFFER_READY.

ERRORS

All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

file_open 1R
fill_data 2R
sweep_data 2R
spin_data 2R
spin_data_pixel 2R
set_collapse_info 2R
get_data_key 1R
get_version_number 1R
ret_codes 1H
libtrec_idfs 2H

BUGS

None

EXAMPLES

Print out each phi band and associated data values for sensor 0 for the SPIA virtual
instrument, which is part of the SPREE instrument/experiment, which is part of the TSS-1
mission, which is identified with the TSS project. For this example, assume that only one
data level or unit is returned by the fill_data module (default mode) and that buf_stat had
been set.

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
register SDDAS_SHORT phi, sample;
SDDAS_FLOAT *data_ptr, *phi_bands, *data;
SDDAS_SHORT status, phi_bins, data_block;
SDDAS_CHAR cur_buf, buf_num, *buf_stat;
static SDDAS_CHAR which_buf = 0;

return_phi_ptrs (2R) return_phi_ptrs (2R)

 274 December 28, 2012

status = get_data_key ("TSS", "TSS-1", "SPREE", "SPREE", "SPIA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }

get_version_number (&vnum);
cur_buf = which_buf;
for (buf_num = 0; buf_num < NUM_BUFFERS; ++buf_num)
 {
 if (*(buf_stat + cur_buf) == BUFFER_READY)
 {
 status = return_phi_ptrs (data_key, "", vnum, 0, &data_ptr, 0, 0, 2, 0.0,
 0, 0, &phi_bins, &phi_bands, &data_block, cur_buf);
 if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by return_phi_ptrs routine.\n", status);
 exit (-1);
 }

 for (phi = 0; phi < phi_bins; ++phi)
 {
 printf ("phi bin is from %.2f to %.2f\n", *(phi_bands + phi),
 *(phi_bands + phi + 1));
 data = data_ptr + phi * data_block;
 for (sample = 0; sample < data_block; ++sample)
 printf ("data[%d] = %.2e\n", sample, *(data + sample));
 }
 which_buf = (cur_buf + 1) % NUM_BUFFERS;
 }
 cur_buf = (cur_buf + 1) % NUM_BUFFERS;
 }

set_bin_info (2R) set_bin_info (2R)

 275 December 28, 2012

SET_BIN_INFO
function - specifies how time-averaged, sample-averaged, or spin-averaged data is to be
binned

SYNOPSIS

#include "libtrec_idfs.h"
#include "ret_codes.h"
#include "user_defs.h"

SDDAS_SHORT set_bin_info (SDDAS_ULONG data_key, SDDAS_CHAR *exten,
 SDDAS_USHORT version, SDDAS_CHAR swp_type,
 SDDAS_FLOAT start, SDDAS_FLOAT stop,
 SDDAS_FLOAT delta, SDDAS_SHORT num_bins,
 SDDAS_CHAR swp_fmt, SDDAS_CHAR num_center,
 SDDAS_CHAR *center_tbls, SDDAS_LONG *center_opers,
 SDDAS_CHAR num_band, SDDAS_CHAR *band_tbls,
 SDDAS_LONG *band_opers,
 SDDAS_CHAR num_upper_band,
 SDDAS_CHAR *upper_band_tbls,
 SDDAS_LONG *upper_band_opers,
 SDDAS_CHAR var_fmt, SDDAS_CHAR input_fmt,
 SDDAS_CHAR bin_fill)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file names when

default files are not to be used, otherwise a null string
version - IDFS data set identification number which allows for multiple

openings of the same data set
swp_type - the format used to determine the number of data bins

 1 - use swp_len number of bins (FIXED_SWEEP)
 2 - user will specify the number of bin

 (VARIABLE_SWEEP)
start - the center value associated with the first bin for variable

sweep processing
stop - the center value associated with the last bin for variable sweep

processing
delta - the skip increment (delta) to use to create the bins for variable

sweep processing
num_bins - the number of bins to create for variable sweep processing
swp_fmt - the spacing for the bins

 0 - use zero spacing (ZERO_SPACING)
 1 - use linear spacing (LIN_SPACING)
 2 - use logarithmic spacing (LOG_SPACING)
 3 - use variable width spacing

 (VARIABLE_SPACING)

set_bin_info (2R) set_bin_info (2R)

 276 December 28, 2012

num_center - the number of elements in the center_tbls and center_opers
parameters

center_tbls - the tables that are to be applied to derive the units for the
center sweep step values for variable width spaced bins

center_opers - the operations that are to be applied to the specified tables to
derive the units for the center sweep step values for variable
width spaced bins

num_band - the number of elements in the band_tbls and band_opers
parameters

band_tbls - the tables that are to be applied to derive the units for the band
width sweep step values for variable width spaced bins or the
actual lower edge band width sweep step values for variable
width spaced bins that use the ‘A’ format flag

band_opers - the operations that are to be applied to the specified tables to
derive the units for the band width sweep step values for
variable width spaced bins or the actual lower edge band
width sweep step values for variable width spaced bins that
use the ‘A’ format flag

num_upper_band - the number of elements in the upper_band_tbls and
upper_band_opers parameters

upper_band_tbls - the tables that are to be applied to derive the units for the
actual upper edge band width sweep step values for variable
width spaced bins that use the ‘A’ format flag

upper_band_opers - the operations that are to be applied to the specified tables to
derive the units for the actual upper edge band width sweep
step values for variable width spaced bins that use the ‘A’
format flag

var_fmt - the format flag for variable width spacing
 L or l - the center sweep values are used as the lower

edge of the band width values
 C or c - the center sweep values are used as the

midpoints of the band width values
 U or u - the center sweep values are used as the upper

edge of the band width values
 E or e - the center sweep values are used as the lower

edge of the band width values and the scan
widths specified are the actual upper edge of
the band width values, not delta values

 A or a - the actual center, lower edge band width and
 upper edge band width values are defined

in the VIDF file (no computations off the
center values are necessary)

input_fmt - the storage scheme for the binning of the data for variable
sweep processing
 1 - data is placed in the bin which encompasses the

 sweep value associated with the data

set_bin_info (2R) set_bin_info (2R)

 277 December 28, 2012

 (POINT_STORAGE)
 2 - data is placed in all bins which fully or partially

 contain the sweep range associated with the data
 (BAND_STORAGE)

bin_fill - method used to fill in any empty data bins
 1 - leave the bins as is (NO_BIN_FILL)
 2 - linearly interpolate across the row and then down

 the column of data (LIN_ROW_COL)
 3 - linearly interpolate down the column and then

 across the row of data (LIN_COL_ROW)
 4 - project data inward across the row and then down

 the column of data (CON_ROW_COL)
 5 - project data inward down the column and then

 across the row of data (CON_COL_ROW)
 6 - apply a two-d least squares fit to the data

 (LEAST_SQ_FIT)
set_bin_info - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for SET_BIN_INFO

STATUS CODE EXPLANATION OF STATUS

SET_BIN_NOT_FOUND the requested data_key, exten, version combination has no memory
allocated for processing (user did not call file_open for this
combination)

SET_BIN_BAD_FMT ZERO_SPACING or VARIABLE_SPACING can only be requested in
conjunction with FIXED SWEEP processing

SET_BIN_MALLOC no memory for data binning information
SET_BIN_INDEX_MALLOC no memory for index values for the sensors
SET_VWIDTH_CENTER_MALLOC no memory to hold center tables and operations for variable width

spacing
SET_VWIDTH_BAND_MALLOC no memory to hold band width tables and operations for variable width

spacing
SET_VWIDTH_UPPER_BAND_MALLOC no memory to hold upper band width tables and operations for variable

width spacing
 Error codes returned by set_collapse_info ()
ALL_OKAY routine terminated successfully

DESCRIPTION

Set_bin_info is the IDFS routine that is utilized to define the size and spacing of the data
buffers that will be filled by the IDFS routines that return time-averaged data (fill_data /
fill_discontinuous_data), sample-averaged data (sweep_data /
sweep_discontinuous_data), or spin-averaged data (spin_data / spin_data_pixel). The
data set of interest is referenced through the key value data_key which can be created using
the get_data_key module. The first call to the set_bin_info routine for the data set
specified will be used to generate the binning information. All subsequent calls with the
identical data_key, exten and version parameters will be ignored. This module must be
called prior to calling the time-averaging, sample-averaging, or spin-averaging routine;
otherwise, an error code will be returned. If the only type of data to be processed for the

set_bin_info (2R) set_bin_info (2R)

 278 December 28, 2012

data set in question is instrument status (mode) data, the user does not need to call this
module since the fill_mode_data / sweep_mode_data routine determines the size and
spacing of the data buffers.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

There are two formats that can be used to bin the data, FIXED SWEEP and VARIABLE
SWEEP. With a FIXED_SWEEP format, the bins are set up according to the information
found in the VIDF file. The element swp_len is used to determine the number of bins. The
data is stored into the bins by using the values found in the scan_index array as index
values into the data bins. The scan_index array is contained in the header record. When
specifying a FIXED sweep format, the values for the parameters start, stop, delta,
num_bins and input_fmt are ignored. If the virtual instrument selected is a scalar
instrument, the set_bin_info module will default to the FIXED SWEEP format with
LINEAR SPACED bins, regardless of the setting of the parameters.

If the user selects a VARIABLE SWEEP format, the user must specify the number of bins
to create (num_bins), the spacing of the bins (swp_fmt), the center value associated with
the first bin (start), the center value associated with the last bin (stop), the skip increment
between bins (delta) and the scheme to use for storing the data (input_fmt). The data in a
vector data set are taken as a function of a variable M. If M is allowed to vary over the
individual measurement period or if M actually represents a band width, then each element
in the vector can be considered to have been accumulated with the interval M - δ1 to M +
δ2. Vector data is binned (along the rows) by M. If the user selects the POINT STORAGE
scheme, the data is stored by the center variable M. If the center variable M is located
between the upper and lower edge values of a given bin, the data value is placed only in this
bin. If the user selects the BAND STORAGE scheme, the data is placed in all bins which

set_bin_info (2R) set_bin_info (2R)

 279 December 28, 2012

are fully or partially contained within the range M - δ1 to M + δ2. The data is multiplied by
the percentage of the bin covered by the range before the data is placed into the bin.

The bin_fill parameter defines the method that is to be used to fill in bins that have not been
filled in with data. If the data bins are to be left as is, with the unfilled bins left unfilled, the
user should set this parameter to NO_BIN_FILL. When selecting a fill method, the user
must be aware that for some of the virtual instruments, the binning of the data occurs within
a two-dimensional set of bins. In this 2-D binning matrix, the columns represent the data
bins and the rows represent phi or azimuthal bins. If the sensor measurements are
independent of phi, the binning of the data is only one-dimensional; otherwise, the binning
is two-dimensional. In both 1-D and 2-D binning, missing or unfilled bins can be filled by
linearly interpolating across the holes using values defined at adjacent bins (LINEAR) or
the data in the adjacent bins can be projected inward across the area of missing bins meeting
in the center of the gap (CONSTANT). For 2-D binning, such filling can either occur first
along the columns and then along the rows (COL/ROW), or first along the rows and then
along the columns (ROW/COL). The 2-D LEAST SQUARES FIT fill method is selectable
only for the 2-D data binning. If the user selects this fill method for 1-D data binning, the
set_bin_info module will change the option to LINEAR COL/ROW (LIN_COL_ROW).

The user should be aware that the data buffers that come back from the time-averaged,
sample-averaged, and spin-averaged routines are NOT modified as far as missing bins is
concerned. If the user wishes to fill in the missing bins according to the bin_fill parameter,
the user must call the module buffer_bin_fill. If the data are collapsed over specified
dimensions, the buffer_bin_fill module need not be called.

Some of the error codes returned by this module are the error codes returned by the module
set_collapse_info. With regards to calling sequences, if the set_bin_info module is to be
utilized, it should be called before the set_collapse_info module is called since the
set_collapse_info module allocates space based upon the number of bins for the data
buffers. If it is determined that the set_collapse_info module was called prior to calling the
set_bin_info routine, the set_collapse_info routine will be recalled from within the
set_bin_info module in order to allocate space for the correct number of bins.

The parameter swp_fmt specifies how the band width values are to be calculated using the
center sweep step values. Two of the options, zero spacing (ZERO_SPACING) and
variable width spacing (VARIABLE_SPACING) are applicable only for FIXED_SWEEP
processing. If the user tries to specify these values for VARIABLE_SWEEP processing, an
error code is returned. Zero spacing defines a scheme where the lower edge of the band is
the same as the upper edge of the band; that is, the band width values are the same as the
center values. Linear spacing defines a scheme where the lower (upper) edge of the band is
determined by subtracting (adding) one-half of the difference between two successive
center values from (to) the center value. The same algorithm is used for log spacing, with
the log of the center values being utilized. Variable width spacing defines a scheme which
makes use of tables defined in the VIDF file to create the center and band width values.
The parameters num_center, center_tbls and center_opers define the tables and table
operations that are to be utilized to calculate the center sweep step values. The parameters

set_bin_info (2R) set_bin_info (2R)

 280 December 28, 2012

num_band, band_tbls and band_opers define the tables and table operations that are to be
utilized to calculate correction values that are to be applied to the center values in order to
calculate the band width values. The variable var_fmt specifies how the correction values
are to be applied. If the var_fmt value is 'L' or 'l', the lower edge of the band is set to the
center value and the upper edge of the band is calculated by adding the correction value to
the center value. If the var_fmt value is 'C' or 'c', the lower edge of the band is calculated
by subtracting one-half of the correction value from the center value and the upper edge of
the band is calculated by adding one-half of the correction value to the center value. If the
var_fmt value is 'U' or 'u', the lower edge of the band is calculated by subtracting the
correction value from the center value and the upper edge of the band is set to the center
value. If the var_fmt value is 'E' or 'e', the lower edge of the band is set to the center value
and the upper edge of the band is set to the correction value; therefore, the correction value
is not really a delta value, it is the actual value to be used as the upper edge of the band. If
this format is selected, please take note that the center values and the lower edge values will
be identical. If the var_fmt value is 'A' or 'a', there is no need to perform a computation
using the center values in order to derive the lower and upper edges of the band. The
“actual” values for the centers, lower edges and upper edges of the scan band are defined
within the VIDF. The parameters num_center, center_tbls, and center_opers define the
tables and table operations that are to be utilized to calculate the center sweep step values.
The parameters num_band, band_tbls, and band_opers define the tables and table
operations that are to be utilized to calculate the lower edges of the band. The parameters
num_upper_band, upper_band_tbls, and upper_band_opers define the tables and table
operations that are to be utilized to calculate the upper edges of the band. The user is
referred to the center_and_band_values write-up for more information concerning center
and band width values.

ERRORS

All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

file_open 1R
fill_data 2R
fill_discontinuous_data 2R
fill_mode_data 2R
sweep_data 2R
sweep_discontinuous_data 2R
sweep_mode_data 2R
spin_data 2R
spin_data_pixel 2R
set_scan_info 2R
buffer_bin_fill 2R
get_data_key 1R
set_collapse_info 2R

set_bin_info (2R) set_bin_info (2R)

 281 December 28, 2012

center_and_band_values 2R
get_version_number 1R
ret_codes 1H
user_defs 1H
libtrec_idfs 2H

BUGS
None

EXAMPLES

Create the data bins using the FIXED SWEEP/LINEAR SPACED binning scheme and
leave empty bins unprocessed for the virtual instrument RTLA, which is part of the RETE
instrument/experiment, which is part of the TSS-1 mission, which is identified with the TSS
project.

#include "libtrec_idfs.h"
#include "ret_codes.h"
#include "user_defs.h"
#define DUMMY_VAL 0

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_LONG *no_opers = NULL;
SDDAS_SHORT status;
SDDAS_CHAR *no_tbls = NULL;

status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

status = set_bin_info (data_key, "", vnum, FIXED_SWEEP, DUMMY_VAL,
 DUMMY_VAL, DUMMY_VAL, DUMMY_VAL,

 LIN_SPACING, 0, no_tbls, no_opers, 0, no_tbls, no_opers,
 0, no_tbls, no_opers, '\0', DUMMY_VAL, NO_BIN_FILL);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by set_bin_info routine.\n", status);
 exit (-1);
 }

set_bin_info (2R) set_bin_info (2R)

 282 December 28, 2012

Create sixteen bins, starting at 5ev, stopping at 155ev, using a delta of 10ev per bin, with
log spacing and the data is to be stored using BAND STORAGE. Empty bins are be left
alone.

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_LONG *no_opers = NULL;
SDDAS_SHORT status;
SDDAS_CHAR *no_tbls = NULL;

status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

status = set_bin_info (data_key, "", vnum, VARIABLE_SWEEP, 5.0, 155.0, 10.0, 16,
 LOG_SPACING, 0, no_tbls, no_opers, 0, no_tbls,
 no_opers, 0, no_tbls, no_opers, '\0', BAND_STORAGE,
 NO_BIN_FILL);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by set_bin_info routine.\n", status);
 exit (-1);
 }

Create the data bins using the FIXED SWEEP/VARIABLE WIDTH SPACED binning
scheme and fill in the empty bins using a constant row/column approach for the virtual
instrument RTLA, which is part of the RETE instrument/experiment, which is part of the
TSS-1 mission, which is identified with the TSS project.

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_SHORT status;
SDDAS_LONG center_opers[1], lower_band_opers[2], upper_band_opers[2];
SDDAS_CHAR center_tbls[1], lower_band_tbls[2], upper_band_tbls[2];
SDDAS_CHAR num_center, num_lower_band, num_upper_band;

set_bin_info (2R) set_bin_info (2R)

 283 December 28, 2012

status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

num_center = 1;
center_tbls[0] = 5;
center_opers[0] = 0;
num_lower_band = 2;
lower_band_tbls[0] = 7;
lower_band_tbls[1] = 8;
lower_band_opers[0] = 0;
lower_band_opers[1] = 3;

num_upper_band = 2;
upper_band_tbls[0] = 9;
upper_band_tbls[1] = 10;
upper_band_opers[0] = 0;
upper_band_opers[1] = 3;

status = set_bin_info (data_key, "", vnum, FIXED_SWEEP, DUMMY_VAL,
 DUMMY_VAL, DUMMY_VAL, DUMMY_VAL,

 VARIABLE_SPACING, num_center, center_tbls, center_opers,
 num_lower_band, lower_band_tbls, lower_band_opers,
 num_upper_band, upper_band_tbls, upper_band_opers,
 'A', POINT_STORAGE, CON_ROW_COL);

if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by set_bin_info routine.\n", status);
 exit (-1);
 }

set_bin_info (2R) set_bin_info (2R)

 284 December 28, 2012

set_collapse_info (2R) set_collapse_info (2R)

 285 December 28, 2012

SET_COLLAPSE_INFO
function - sets up information that is pertinent to the collapsing of the data over multiple
dimensions

SYNOPSIS

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT set_collapse_info (SDDAS_ULONG data_key, SDDAS_CHAR *exten,
 SDDAS_USHORT version, SDDAS_SHORT num_units,
 SDDAS_FLOAT delta_phi, SDDAS_FLOAT *actual_phi,
 SDDAS_CHAR interleave)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file names when

default files are not to be used, otherwise a null string
version - IDFS data set identification number which allows for multiple

openings of the same data set
num_units - the total number of units or data levels to be returned for all

sensors (must be the same for all sensors)
delta_phi - the requested resolution of the phi bins
actual_phi - the actual resolution used for the phi bins
interleave - flag indicating if the data is to be interleaved (data not cleared

out if missing on next sweep)
 0 - clear out data matrices and buffers upon each

call to the fill_data / fill_discontinuous_data /
sweep_data / sweep_discontinuous_data /
spin_data / spin_data_pixel routine

 1 - leave the data matrices and buffers preserved
(do not clear)

set_collapse_info - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for SET_COLLAPSE_INFO

STATUS CODE EXPLANATION OF STATUS
COLLAPSE_NOT_FOUND the requested data_key, exten, version combination has no memory allocated for

processing (user did not call file_open for this combination)
COLLAPSE_MALLOC no memory to hold the data collapsing structures
COLLAPSE_SEN_MALLOC no memory to hold sensor specific collapsing information
THETA_CHK_MALLOC no memory for temporary array
THETA_BIN_MALLOC no memory for theta angle values
ORDER_THETA_MALLOC no memory for theta bin order indexes
COLLAPSE_DATA_MALLOC no memory for matrices that hold data gathered over specific dimensions
COLLAPSE_DATA_ADDRESS no memory to hold the array of addresses of the pointers to the data and

normalization factors for the phi matrices
ALL_OKAY routine terminated successfully

set_collapse_info (2R) set_collapse_info (2R)

 286 December 28, 2012

DESCRIPTION
Set_collapse_info is the IDFS routine which sets up the data matrices and other information
that is pertinent to collapse data over the charge, mass, phi, theta and/or scan dimensions.
The data set of interest is referenced through the key value data_key which can be created
using the get_data_key module. The first call to the set_collapse_info module for the data
set specified will be used to generate the dimension collapsing information. All subsequent
calls specifying the same data set will be ignored. In addition, if the module set_bin_info is
to be utilized, it should be called prior to calling this module since this module allocates
space based upon the number of bins per data buffer. If the only type of data to be
processed for the data set in question is instrument status (mode) data, the user does not
need to call this module since dimensionality is associated with sensor-specific data and
instrument status data is not sensor-specific.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

If the virtual instrument acquires data as a function of phi and the user wishes to average the
data over a specified phi range, the fill_data / sweep_data / spin_data / spin_data_pixel
routine must be used to acquire the phi data matrix. The user must call the
set_collapse_info module before any data is gathered in order to specify the resolution of
the phi bins and to specify if the interleave option is to be utilized when building the phi
matrix. If the phi data matrix is not needed, the user should pass 360.0 for the delta_phi
parameter. The fill_discontinuous_data / sweep_discontinuous_data routine does not
support any data sets with a PHI dimension; therefore, the user should pass 360.0 for the
delta_phi parameter if the fill_discontinuous_data / sweep_discontinuous_data routine is
to be utilized. The parameter actual_phi returns the true resolution used for the phi bins.
An internal calculation (360.0 / delta_phi) is performed to ensure that an integer number of
phi bins results; therefore, in some cases, the resolution actually used may deviate from the

set_collapse_info (2R) set_collapse_info (2R)

 287 December 28, 2012

resolution specified. The interleave option will be utilized for all data matrices that are
associated with a specific dimension.

The default mode for the fill_data / fill_discontinuous_data / sweep_data /
sweep_discontinuous_data / spin_data / spin_data_pixel routines is to return sensor data
in one data level (raw units) for each of the sensors processed. If the default mode is
preserved, the value for the parameter num_units should be set to one. If the user made
any calls to the fill_sensor_info module to add/modify the data level(s) being returned, the
value for the parameter num_units can be retrieved by calling the module units_index.

ERRORS

All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

file_open 1R
fill_data 2R
fill_discontinuous_data 2R
sweep_data 2R
sweep_discontinuous_data 2R
spin_data 2R
spin_data_pixel 2R
fill_sensor_info 2R
units_index 2R
set_bin_info 2R
get_data_key 1R
get_version_number 1R
ret_codes 1H
libtrec_idfs 2H

BUGS

None

EXAMPLES

In order to produce a line plot from the RTLA virtual instrument, data must be collapsed
over a frequency range. Assuming that a single data level (raw units) is being returned,
make a call to disable phi information and the interleave option. The virtual instrument
RTLA is part of the RETE instrument/experiment, which is part of the TSS-1 mission,
which is identified with the TSS project.

#include "libtrec_idfs.h"
#include "ret_codes.h"

set_collapse_info (2R) set_collapse_info (2R)

 288 December 28, 2012

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_FLOAT actual_phi;
SDDAS_SHORT status, num_units;

num_units = 1;
status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

status = set_collapse_info (data_key, "", vnum, num_units, 360.0, &actual_phi, 0);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by set_collapse_info routine.\n", status);
 exit (-1);
 }

set_scan_info (2R) set_scan_info (2R)

 289 December 28, 2012

SET_SCAN_INFO
function - specifies the tables/operations to be applied to arrive at the desired units for the
sweep step values that are associated with the data bins

SYNOPSIS

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT set_scan_info (SDDAS_ULONG data_key, SDDAS_CHAR *exten,
 SDDAS_USHORT version, SDDAS_CHAR num_tbls,
 SDDAS_CHAR *tbls_to_apply, SDDAS_LONG *tbl_oper)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file names when

default files are not to be used, otherwise a null string
version - IDFS data set identification number which allows for multiple

openings of the same data set
num_tbls - the number of elements specified in the tbls_to_apply and

tbl_oper parameters
tbls_to_apply - the tables that are to be applied in order to derive the desired

units for the sweep step values
tbl_oper - the operations that are to be applied to the specified tables in

order to derive the desired units for the sweep step values
set_scan_info - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for SET_SCAN_INFO

STATUS CODE EXPLANATION OF STATUS

SET_SCAN_NOT_FOUND the requested data_key, exten, version combination has no memory allocated for
processing (user did not call file_open for this combination)

SCAN_BIN_MISSING the data binning information has not been allocated (user did not call set_bin_info
for this combination)

SCAN_INDEX_MALLOC no memory to hold table offset values
SET_SCAN_TBL_MALLOC no memory for table number / table operation information
SCAN_IDF_ELE_NOT_FOUND the data item being requested was not found in the VIDF file
SCAN_IDF_MANY_BYTES the number of elements being requested is more than the number of elements

available for the selected field
SCAN_IDF_TBL_NUM the table being requested exceeds the number of defined tables
SCAN_IDF_CON_NUM the constant being requested exceeds the number of defined constants
SCAN_IDF_NO_ENTRY the field being requested is not defined
ALL_OKAY routine terminated successfully

DESCRIPTION

Set_scan_info is the IDFS routine that is utilized to specify the units for the sweep step
values that are associated with the data bins defined by the set_bin_info module. These
sweep step values are used by the IDFS routines that return time-averaged data (fill_data /
fill_discontinuous_data), sample-averaged data (sweep_data /

set_scan_info (2R) set_scan_info (2R)

 290 December 28, 2012

sweep_discontinuous_data), or spin-averaged data (spin_data / spin_data_pixel) when
storing the data into the data bins. This module must be called after the call to the
set_bin_info module has been made; otherwise, an error code is returned. A call to this
routine is optional since the set_bin_info module sets up the system to calculate the sweep
step values in terms of raw units, with one set of sweep step values defined for all sensors
for the selected data source. If the user intends to make use of this module, the call must be
made prior to calling the center_and_band_values routine. If the only type of data to be
processed for the data set in question is instrument status (mode) data, the user does not
need to call this module since the fill_mode_data / sweep_mode_data routine determines
how the data is to be stored in the data bins.

The data set of interest is referenced through the key value data_key which can be created
using the get_data_key module. The first call to the set_scan_info module which indicates
non-raw units will be used to specify the units for the sweep step values. All subsequent
calls specifying the same data set will be ignored. This routine should be used with
FIXED_SWEEP, non-variable width spaced data bins. If the user selected
VARIABLE_SWEEP or FIXED_SWEEP with data bins that are created using
VARIABLE_SPACING, the information specified by this routine is stored but not utilized
when determining the sweep step values that are associated with the data bins; the
information specified in the call to the set_bin_info routine is utilized.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

The units for the sweep step values associated with the data bins is specified by the user
through the parameters num_tbls, tbls_to_apply and tbl_oper. If the user wants raw units,
that is, the telemetry data, to be returned, the user should set the num_tbls parameter to
zero and put a placeholder variable for the tbls_to_apply and tbl_oper parameters. For

set_scan_info (2R) set_scan_info (2R)

 291 December 28, 2012

other units, the user must specify the tables and the table operations that are to be applied to
calculate the desired unit. The order is implied by the contents of the tbls_to_apply array.

ERRORS

All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

fill_data 2R
fill_discontinuous_data 2R
fill_mode_data 2R
sweep_data 2R
sweep_discontinuous_data 2R
sweep_mode_data 2R
spin_data 2R
spin_data_pixel 2R
set_bin_info 2R
center_and_band_values 2R
file_open 1R
get_data_key 1R
get_version_number 1R
ret_codes 1H
libtrec_idfs 2H

BUGS

None

EXAMPLES

Indicate the tables that are to be applied to derive the sweep step values for the virtual
instrument RTLA, which is part of the RETE instrument/experiment, which is part of the
TSS-1 mission, which is identified with the TSS project.

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_LONG tbl_oper[2];
SDDAS_SHORT status;
SDDAS_CHAR num_tbls, tbls_to_apply[2];

set_scan_info (2R) set_scan_info (2R)

 292 December 28, 2012

status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

/* There are two tables to be applied to derive sweep step units. */
/* Table 3 is the first table to be applied, followed by table 5. */

num_tbls = 2;
tbls_to_apply[0] = 3;
tbls_to_apply[1] = 5;
tbl_oper[0] = 0;
tbl_oper[1] = 3;

status = set_scan_info (data_key, "", vnum, num_tbls, tbls_to_apply, tbl_oper);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by set_scan_info routine.\n", status);
 exit (-1);
 }

set_time_values (2R) set_time_values (2R)

 293 December 28, 2012

SET_TIME_VALUES
function - sets the base reference time, reference location and time duration to be utilized by
the fill_data / fill_discontinuous_data / fill_mode_data / spin_data_pixel modules

SYNOPSIS

#include "libtrec_idfs.h"

void set_time_values (SDDAS_USHORT version, SDDAS_SHORT base_year,
 SDDAS_SHORT base_day, SDDAS_LONG base_sec,
 SDDAS_LONG base_nano, SDDAS_LONG base_pix,
 SDDAS_LONG res_sec, SDDAS_LONG res_nano)

ARGUMENTS

version - IDFS data set identification number which allows for multiple
openings of the same data set

base_year - the year time component for the base reference time
base_day - the day time component for the base reference time
base_sec - the time of day in seconds for the base reference time
base_nano - the time of day residual in nanoseconds for the base reference time
base_pix - the reference point or location associated with the base reference time
res_sec - the time duration (delta) in seconds
res_nano - the time duration residual in nanoseconds

DESCRIPTION

Set_time_values is the IDFS routine that sets the base reference time, the reference location
and the time duration values to be used by the fill_data / fill_discontinuous_data /
fill_mode_data / spin_data_pixel routines. This routine should be called once, after all
calls to the file_open and file_pos routines have been made. If the base reference time is
not known, as is the case in real-time processing, the user can make a call to the read_drec
/ read_drec_spin module in order to retrieve the starting time of the first sweep processed.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

ERRORS

This routine returns no status or error codes.

set_time_values (2R) set_time_values (2R)

 294 December 28, 2012

SEE ALSO
fill_data 2R
fill_discontinuous_data 2R
fill_mode_data 2R
spin_data_pixel 2R
file_open 1R
file_pos 1R
get_version_number 1R
read_drec 1R
read_drec_spin 1R
libtrec_idfs 2H

BUGS

None

EXAMPLES

The base reference time to be utilized is 1992, day 23, time 00:25:36 which is equal to 1536
seconds. The resolution to be utilized is 1.500 seconds and the reference location is at zero.
Assume that the variable vnum has been set by a previous call to the get_version_number
routine.

set_time_values (vnum, 1992, 23, 1536, 0, 0, 1, 500000000);

spin_data (2R) spin_data (2R)

 295 December 28, 2012

SPIN_DATA
function - returns spin-averaged sensor-specific data

SYNOPSIS

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT spin_data (SDDAS_ULONG data_key, SDDAS_CHAR *exten,
 SDDAS_USHORT version, void *idf_data_ptr,

 SDDAS_SHORT **ret_sensors, SDDAS_FLOAT **ret_data,
 SDDAS_FLOAT **ret_frac, SDDAS_CHAR **bin_stat,
 SDDAS_SHORT *num_sen, SDDAS_SHORT **num_units,
 SDDAS_SHORT *block_size, SDDAS_SHORT **stime_yr,
 SDDAS_SHORT **stime_day, SDDAS_LONG **stime_sec,
 SDDAS_LONG **stime_nano, SDDAS_SHORT **etime_yr,
 SDDAS_SHORT **etime_day, SDDAS_LONG **etime_sec,
 SDDAS_LONG **etime_nano, SDDAS_CHAR *hdr_change)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file names when

default files are not to be used, otherwise a null string
version - IDFS data set identification number which allows for multiple

openings of the same data set
idf_data_ptr - pointer to the idf_data structure that temporarily holds

sensor data and pertinent ancillary data for the data set of
interest

ret_sensors - an array which holds the sensor number(s) for which data is
returned

- the array is initialized to -1 in all elements;
 valid sensor numbers start with 0

ret_data - pointer to the data being returned (data for all sensors
processed)

ret_frac - pointer to the normalization factors for the data being returned
bin_stat - pointer to status flags which are associated with each data bin

returned
0 - no data has been placed into the data

bin being processed
1 - data has been placed into the data bin

being processed
num_sen - the number of elements in the ret_sensors array
num_units - an array holding the number of data sets to bypass in order to

get to the data for the sensor being processed
block_size - the number of data values returned in a data buffer
stime_yr - pointer to the start time year value for the first sweep
 contained within the spin being processed

spin_data (2R) spin_data (2R)

 296 December 28, 2012

stime_day - pointer to the start time day of year value for the first sweep
contained within the spin being processed

stime_sec - pointer to the start time of day value (in seconds) for the first
sweep contained within the spin being processed

stime_nano - pointer to the start time of day residual (in nanoseconds) for
the first sweep contained within the spin being processed

etime_yr - pointer to the end time year value for the last sweep contained
within the spin being processed

etime_day - pointer to the end time day of year value for the last sweep
contained within the spin being processed

etime_sec - pointer to the end time of day value (in seconds) for the last
sweep contained within the spin being processed

etime_nano - pointer to the end time of day residual (in nanoseconds) for
the last sweep contained within the spin being processed

hdr_change - flag which indicates a header change occurred while
processing the data

0 - a header change was not encountered
during the processing of the data

1 - a header change was encountered
during the processing of the data

spin_data - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for SPIN_DATA

STATUS CODE EXPLANATION OF STATUS
SPIN_DATA_NOT_FOUND the requested data_key, exten, version combination has no memory

allocated for processing (user did not call file_open for this
combination)

SPIN_DATA_NO_SPIN the requested data set does not spin
FILL_ARRAY_MALLOC no memory for structure which holds information pertinent to the spin-

averaged data
SPIN_DATA_BIN_MISSING the data binning information has not been allocated (user did not call

set_bin_info for this combination)
SPIN_DATA_CENTER_BAND_MISSING the routine center_and_band_values has not been called prior to

calling the spin_data routine
SPIN_INFO_MALLOC no memory for data buffer information
SPIN_UNITS_MALLOC no memory to hold the various data levels for the data buffer
SPIN_UNITS_REALLOC no memory for expansion of space to hold the various data levels for the

data buffer
SPIN_SWP_MALLOC no memory for sweep values in specified units
SPIN_SWP_REALLOC no memory for expansion of sweep values in specified units
SPIN_DATA_MALLOC no memory for data buffer
SPIN_DATA_WITH_FILL_SWEEP spin_data cannot be used interchangeably with the fill_data and / or

sweep_data routines for the same data key, extension, version
combination

PHI_DIFF_UNITS the sensors being processed do not process the same number of data
levels (units)

FILL_PHI_FIRST the starting azimuthal angle was not contained within any of the defined
phi bins

spin_data (2R) spin_data (2R)

 297 December 28, 2012

STATUS CODE EXPLANATION OF STATUS
FILL_PHI_LAST the ending azimuthal angle was not contained within any of the defined

phi bins
SWP_TIMES_TMP_MALLOC no memory to hold the time components for each element of the sweep
BAD_VFMT bad format character for variable width bin spacing
 error codes returned by fill_sensor_info ()
 error codes returned by read_drec_spin ()
 error codes returned by convert_to_units ()
ALL_OKAY routine terminated successfully

DESCRIPTION

Spin_data is the IDFS spin-averaging data read routine for sensor-specific data, summing
the data for all sweeps that pertain to the spin being processed. The data set of interest is
referenced through the key value data_key which can be created using the get_data_key
module. Spin_data processes sensor-specific data only, that is, it can process sensor,
sweep step, calibration, data quality, pitch angle, azimuthal angle, spacecraft potential and
background data; however, the type of manipulation being performed by this module is best
suited to sensor data. Spin_data assumes that the data set of interest does not roll over to a
minimum value when the maximum threshold has been reached or to a maximum value
when the minimum threshold has been reached. This assumption is crucial since multiple
samples are averaged together. If the data set does roll over at the thresholds, the averaging
of these samples will probably result in incorrect data values. An example of a roll over
data set is longitude data, which resets values to the minimum threshold (-180) when the
maximum threshold (180) has been reached.

For the spin_data module, data acquisition is based upon a full spin of data, not a given
time interval as with the fill_data module; however, there is still the need to utilize some
form of time control. The sensor that is selected as the controller through the call to the
start_of_spin module will serve as the time manager and all sensors that have a start of spin
time WITHIN the time interval of the controller's spin will be returned as a group.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,

spin_data (2R) spin_data (2R)

 298 December 28, 2012

which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

This routine will process data one spin at a time, placing the data into one buffer which
holds data that is accumulated over the current spin interval. There are N many sub-buffers
which hold the data in each of the requested data levels or units. The user must process the
data contained within the data buffer before the next call to the spin_data routine is made
since the module will clear out this buffer for re-use. The data values must be normalized
using the normalization factors returned along with the data. If the sensors rotate or
alternate when data is returned, the result may be that the data buffer for a specific sensor
may not contain any data since the data buffer is reset or cleared out upon each call to the
spin_data module. The user is advised to check the value or values in the bin_stat array.
If all values are 0, no data was placed into the buffer.

The size and spacing of the data buffers are either defined by the user or by elements
contained within the virtual instrument definition document. The user must call the
set_bin_info module before calling the spin_data routine in order to specify how the
binning of the data is to occur. In addition, the user must call the center_and_band_values
module before calling the spin_data module. If the spin_data routine determines that no
binning scheme has been selected, an error code is returned to the user.

The user should be aware that the data buffers that come back from the spin_data module
are NOT modified as far as missing bins are concerned. If the user wishes to fill in the
missing bins according to the method specified in the call to the set_bin_info module, the
user must call the module buffer_bin_fill. If the data are collapsed over specified
dimensions, the buffer_bin_fill module need not be called.

The default mode for the spin_data routine is to return sensor data in raw units (no tables
applied) for each of the sensors processed, with data cutoff values set at -3.0e38
(VALID_MIN) and 3.0e38 (VALID_MAX). The user may select the type of data, the units
to be returned and the data cutoff values to be applied by calling the fill_sensor_info
module prior to calling the spin_data module. The user should make one call to the
fill_sensor_info module for each sensor that is to be retrieved for each data type/units/data
cutoff combination selected.

If the virtual instrument acquires data over the PHI dimension and the user wishes to
average the data over a specified phi range, the spin_data routine must be used to acquire
the phi data matrix. The user must call the module set_collapse_info prior to calling the
spin_data routine in order to specify the resolution of the phi bins and to specify if the
interleave option is to be utilized when building the phi matrix.

ERRORS

All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the

spin_data (2R) spin_data (2R)

 299 December 28, 2012

mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO
file_open 1R
file_pos 1R
start_of_spin 1R
get_data_key 1R
get_version_number 1R
create_data_structure 1R
create_idf_data_structure 1R
set_bin_info 2R
center_and_band_values 2R
set_scan_info 2R
fill_sensor_info 2R
units_index 2R
set_collapse_info 2R
buffer_bin_fill 2R
ret_codes 1H
user_defs 1H
libtrec_idfs 2H

BUGS

None

EXAMPLES

Obtain spin-averaged data from the virtual instrument CP3DRH, which is part of the 3DR
instrument, which is part of the PEACE experiment, which is part of the CLUSTER-2
mission, which is identified with the CLUSTERII project.

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_FLOAT *ret_data, *ret_frac;
SDDAS_LONG *start_time_sec, *start_time_nano, *end_time_sec, *end_time_nano;
SDDAS_SHORT *start_time_yr, *start_time_day, *end_time_yr, *end_time_day;
SDDAS_SHORT status, *sen_numbers, num_sen, *num_units, data_block;
SDDAS_CHAR *ret_bin, hdr_change;
void *idf_data_ptr;

status = get_data_key ("CLUSTERII", "CLUSTER-2", "PEACE", "3DR", "CP3DRH",

 &data_key);

spin_data (2R) spin_data (2R)

 300 December 28, 2012

if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);
.
.
.

status = spin_data (data_key, "", vnum, idf_data_ptr, &sen_numbers,

 &ret_data, &ret_frac, &ret_bin, &num_sen, &num_units,
 &data_block, &start_time_yr, &start_time_day,
 &start_time_sec, &start_time_nano, &end_time_yr,
 &end_time_day, &end_time_sec, &end_time_nano,
 &hdr_change);

if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by spin_data routine.\n", status);
 exit (-1);
 }

spin_data_pixel (2R) spin_data_pixel (2R)

 301 December 28, 2012

SPIN_DATA_PIXEL
function - returns spin-averaged sensor-specific data along with reference indicators with
respect to a time-oriented axis

SYNOPSIS

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT spin_data_pixel (SDDAS_ULONG data_key, SDDAS_CHAR *exten,
 SDDAS_USHORT version, void *idf_data_ptr,

 SDDAS_SHORT **ret_sensors, SDDAS_FLOAT **ret_data,
 SDDAS_FLOAT **ret_frac, SDDAS_CHAR **bin_stat,
 SDDAS_LONG **bpix, SDDAS_LONG **epix,
 SDDAS_SHORT *num_sen, SDDAS_SHORT **num_units,
 SDDAS_SHORT *block_size, SDDAS_SHORT **stime_yr,
 SDDAS_SHORT **stime_day, SDDAS_LONG **stime_sec,
 SDDAS_LONG **stime_nano, SDDAS_SHORT **etime_yr,
 SDDAS_SHORT **etime_day, SDDAS_LONG **etime_sec,
 SDDAS_LONG **etime_nano, SDDAS_CHAR *hdr_change)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file names when

default files are not to be used, otherwise a null string
version - IDFS data set identification number which allows for multiple

openings of the same data set
idf_data_ptr - pointer to the idf_data structure that temporarily holds

sensor data and pertinent ancillary data for the data set of
interest

ret_sensors - an array which holds the sensor number(s) for which data is
returned

- the array is initialized to -1 in all elements;
valid sensor numbers start with 0

ret_data - pointer to the data being returned (data for all sensors
processed)

ret_frac - pointer to the normalization factors for the data being returned
bin_stat - pointer to status flags which are associated with each data bin

returned
0 - no data has been placed into the data bin being

processed
1 - data has been placed into the data bin being

processed
bpix - pointer to the starting pixel location for the data buffer

returned
epix - pointer to the ending pixel location for the data buffer

returned

spin_data_pixel (2R) spin_data_pixel (2R)

 302 December 28, 2012

num_sen - the number of elements in the ret_sensors array
num_units - an array holding the number of data sets to bypass in order to

get to the data for the sensor being processed
block_size - the number of data values returned in a data buffer
stime_yr - pointer to the start time year value for the first sweep
 contained within the spin being processed
stime_day - pointer to the start time day of year value for the first sweep

contained within the spin being processed
stime_sec - pointer to the start time of day value (in seconds) for the first

sweep contained within the spin being processed
stime_nano - pointer to the start time of day residual (in nanoseconds) for

the first sweep contained within the spin being processed
etime_yr - pointer to the end time year value for the last sweep contained

within the spin being processed
etime_day - pointer to the end time day of year value for the last sweep

contained within the spin being processed
etime_sec - pointer to the end time of day value (in seconds) for the last

sweep contained within the spin being processed
etime_nano - pointer to the end time of day residual (in nanoseconds) for

the last sweep contained within the spin being processed
hdr_change - flag which indicates a header change occurred while

processing the data
0 - a header change was not encountered during

the processing of the data
1 - a header change was encountered

during the processing of the data
spin_data_pixel - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for SPIN_DATA_PIXEL

STATUS CODE EXPLANATION OF STATUS
SPIN_DATA_PIX_NOT_FOUND the requested data_key, exten, version combination has no memory

allocated for processing (user did not call file_open for this
combination)

SPIN_DATA_PIX_NO_SPIN the requested data set does not spin
FILL_ARRAY_MALLOC no memory for structure which holds information pertinent to the

spin-averaged data
SPIN_DATA_PIX_BIN_MISSING the data binning information has not been allocated (user did not

call set_bin_info for this combination)
SPIN_DATA_PIX_CENTER_BAND_MISSING the routine center_and_band_values has not been called prior to

calling the spin_data_pix routine
SPIN_INFO_MALLOC no memory for data buffer information
SPIN_UNITS_MALLOC no memory to hold the various data levels for the data buffer
SPIN_UNITS_REALLOC no memory for expansion of space to hold the various data levels

for the data buffer
SPIN_SWP_MALLOC no memory for sweep values in specified units
SPIN_SWP_REALLOC no memory for expansion of sweep values in specified units
SPIN_DATA_MALLOC no memory for data buffer

spin_data_pixel (2R) spin_data_pixel (2R)

 303 December 28, 2012

STATUS CODE EXPLANATION OF STATUS
SPIN_DATA_PIX_WITH_FILL_SWEEP spin_data_pix cannot be used interchangeably with the fill_data

and / or sweep_data routines for the same data key, extension,
version combination

BAD_VFMT bad format character for variable width bin spacing
SWP_TIMES_TMP_MALLOC no memory to hold the time components for each element of the

sweep
PHI_DIFF_UNITS the sensors being processed do not process the same number of

data levels (units)
FILL_PHI_FIRST the starting azimuthal angle was not contained within any of the

defined phi bins
FILL_PHI_LAST the ending azimuthal angle was not contained within any of the

defined phi bins
 error codes returned by fill_sensor_info ()
 error codes returned by read_drec_spin ()
 error codes returned by convert_to_units ()
ALL_OKAY routine terminated successfully

DESCRIPTION

Spin_data_pix is the IDFS spin-averaging data read routine for sensor-specific data,
summing the data for all sweeps that pertain to the spin being processed. The data set of
interest is referenced through the key value data_key which can be created using the
get_data_key module. Spin_data_pix processes sensor-specific data only, that is, it
processes sensor, sweep step, calibration, data quality, pitch angle, azimuthal angle,
spacecraft potential and background data; however, the type of manipulation being
performed by this module is best suited to sensor data. Spin_data_pix assumes that the
data set of interest does not roll over to a minimum value when the maximum threshold has
been reached or to a maximum value when the minimum threshold has been reached. This
assumption is crucial since multiple samples may be averaged together in a single buffer. If
the data set does roll over at the thresholds, the averaging of these samples will probably
result in incorrect data values. An example of a roll over data set is longitude data, which
resets values to the minimum threshold (-180) when the maximum threshold (180) has been
reached.

For the spin_data_pix module, data acquisition is based upon a full spin of data, not a
given time interval as with the fill_data module; however, there is still the need to utilize
some form of time control. The sensor that is selected as the controller through the call to
the start_of_spin module will serve as the time manager and all sensors that have a start of
spin time WITHIN the time interval of the controller's spin will be returned as a group. The
difference between the spin_data module and this module is the return of a starting location
and an ending location that are located along a time-axis, similar to the fill_data routine.
The user may use these values as references to the base location specified in the call to the
set_time_values module. That is, given a base time value, a time interval and a reference
location, the spin_data_pix routine will return the location of the spin with respect to time.
The user may chose to ignore these values or may use these locations to plot data along an
axis that is scaled with respect to time. The user must call the module set_time_values
before the spin_data_pix module can be called. If the spin_data_pix routine determines
that the set_time_values module has not been called, an error code is returned to the user.

spin_data_pixel (2R) spin_data_pixel (2R)

 304 December 28, 2012

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

This routine will process data one spin at a time, placing the data into a buffer which holds
data that is accumulated over the current spin interval. There are N many sub-buffers which
hold the data in each of the requested data levels or units. The user must process the data
contained within the data buffer before the next call to the spin_data_pix routine is made
since the module will clear out this buffer for re-use. The data values must be normalized
using the normalization factors returned along with the data. If the sensors rotate or
alternate when data is returned, the result may be that the data buffer for a specific sensor
may not contain any data since the data buffer is reset or cleared out upon each call to the
spin_data_pix module. The user is advised to check the value or values in the bin_stat
array. If all values are 0, no data was placed into the buffer.

The size and spacing of the data buffer is either defined by the user or by elements
contained within the virtual instrument definition document. The user must call the
set_bin_info module before calling the spin_data_pix routine in order to specify how the
binning of the data is to occur. In addition, the user must call the center_and_band_values
module before calling the spin_data_pix module. If the spin_data_pix routine determines
that no binning scheme has been selected, an error code is returned to the user.

The user should be aware that the data buffer that comes back from the spin_data_pix
routine is NOT modified as far as missing bins is concerned. If the user wishes to fill in the
missing bins according to the method specified in the call to the set_bin_info module, the
user must call the module buffer_bin_fill. If the data are collapsed over specified
dimensions, the buffer_bin_fill module need not be called.

spin_data_pixel (2R) spin_data_pixel (2R)

 305 December 28, 2012

The default mode for the spin_data_pix routine is to return sensor data in raw units (no
tables applied) for each of the sensors processed, with data cutoff values set at -3.0e38
(VALID_MIN) and 3.0e38 (VALID_MAX). The user may select the type of data, the units
to be returned and the data cutoff values to be applied by calling the fill_sensor_info
module prior to calling the spin_data_pix module. The user should make one call to the
fill_sensor_info module for each sensor that is to be retrieved for each data type/units/data
cutoff combination selected.

If the virtual instrument acquires data over the PHI dimension and the user wishes to
average the data over a specified phi range, the spin_data_pix routine must be used to
acquire the phi data matrix. The user must call the module set_collapse_info prior to
calling the spin_data_pix module in order to specify the resolution of the phi bins and to
specify if the interleave option is to be utilized when building the phi matrix.

ERRORS
All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO
file_open 1R
file_pos 1R
start_of_spin 1R
get_data_key 1R
get_version_number 1R
create_data_structure 1R
create_idf_data_structure 1R
set_bin_info 2R
center_and_band_values 2R
set_scan_info 2R
fill_sensor_info 2R
units_index 2R
set_collapse_info 2R
buffer_bin_fill 2R
set_time_values 2R
ret_codes 1H
user_defs 1H
libtrec_idfs 2H

BUGS

None

spin_data_pixel (2R) spin_data_pixel (2R)

 306 December 28, 2012

EXAMPLES
Obtain spin-averaged data from the virtual instrument CP3DRH, which is part of the 3DR
instrument, which is part of the PEACE experiment, which is part of the CLUSTER-2
mission, which is identified with the CLUSTERII project.

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_FLOAT *ret_data, *ret_frac;
SDDAS_LONG *start_time_sec, *start_time_nano, *end_time_sec, *end_time_nano;
SDDAS_LONG *bpix, *epix;
SDDAS_SHORT *start_time_yr, *start_time_day, *end_time_yr, *end_time_day;
SDDAS_SHORT status, *sen_numbers, num_sen, *num_units, data_block;
SDDAS_CHAR *ret_bin, hdr_change;
void *idf_data_ptr;

status = get_data_key ("CLUSTERII", "CLUSTER-2", "PEACE", "3DR", "CP3DRH",

 &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

.
.
.

status = spin_data_pix (data_key, "", vnum, idf_data_ptr, &sen_numbers, &ret_data,

 &ret_frac, &ret_bin, &bpix, &epix, &num_sen, &num_units,
 &data_block, &start_time_yr, &start_time_day, &start_time_sec,
 &start_time_nano, &end_time_yr, &end_time_day,

 &end_time_sec, &end_time_nano, &hdr_change);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by spin_data_pix routine.\n", status);
 exit (-1);
 }

sweep_data (2R) sweep_data (2R)

 307 December 28, 2012

SWEEP_DATA
function - returns sample-averaged sensor-specific data

SYNOPSIS

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT sweep_data (SDDAS_ULONG data_key, SDDAS_CHAR *exten,
 SDDAS_USHORT version, void *idf_data_ptr,
 SDDAS_LONG num_swps, SDDAS_SHORT **ret_sensors,
 SDDAS_FLOAT **ret_data, SDDAS_FLOAT **ret_frac,
 SDDAS_CHAR **bin_stat, SDDAS_SHORT *num_sen,
 SDDAS_SHORT **num_units, SDDAS_SHORT *block_size,
 SDDAS_SHORT *stime_yr, SDDAS_SHORT *stime_day,
 SDDAS_LONG *stime_sec, SDDAS_LONG *stime_nano,
 SDDAS_SHORT *etime_yr, SDDAS_SHORT *etime_day,
 SDDAS_LONG *etime_sec, SDDAS_LONG *etime_nano,
 SDDAS_CHAR *hdr_change, SDDAS_UCHAR exclude_dqual,
 SDDAS_CHAR *complete_acq)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file names when

default files are not to be used, otherwise a null string
version - IDFS data set identification number which allows for multiple

openings of the same data set
idf_data_ptr - pointer to the idf_data structure that temporarily holds sensor

data and pertinent ancillary data for the data set of interest for
a single sweep of data

num_swps - the number of samples (sweeps) to average together
ret_sensors - an array which holds the sensor number(s) for which data is

returned
- the array is initialized to -1 in all elements;
 valid sensor numbers start with 0

ret_data - pointer to the data being returned (data for all sensors
processed)

ret_frac - pointer to the normalization factors for the data being returned
bin_stat - pointer to status flags which are associated with each data bin

returned
0 - no data has been placed into the data

bin being processed
1 - data has been placed into the data bin

being processed
num_sen - the number of elements in the ret_sensors array
num_units - an array holding the number of data sets to bypass in order to

get to the data for the sensor being processed

sweep_data (2R) sweep_data (2R)

 308 December 28, 2012

block_size - the number of data values returned in a data buffer
stime_yr - the year value for the first sweep processed
stime_day - the day of year value for the first sweep processed
stime_sec - the time of day in seconds for the first sweep processed
stime_nano - the time of day residual in nanoseconds for the first sweep

processed
etime_yr - the year value for the last sweep processed
etime_day - the day of year value for the last sweep processed
etime_sec - the time of day in seconds for the last sweep processed
etime_nano - the time of day residual in nanoseconds for the last sweep

processed
hdr_change - flag which indicates a header change occurred while

processing the data
0 - a header change was not encountered

during the processing of the data
1 - a header change was encountered

during the processing of the data
exclude_dqual - data is to be excluded if the d_qual flag associated with the

data is set to the value specified
complete_acq - flag which indicates if all samples (sweeps) were acquired

 0 - not all samples were acquired
 1 - all samples were acquired

sweep_data - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for SWEEP_DATA

STATUS CODE EXPLANATION OF STATUS
SWEEP_NOT_FOUND the requested data_key, exten, version combination has no memory allocated

for processing (user did not call file_open for this combination)
FILL_ARRAY_MALLOC no memory for structure which holds information pertinent to the sample-

averaged data
SWEEP_BIN_MISSING the data binning information has not been allocated (user did not call

set_bin_info for this combination)
SWEEP_CENTER_BAND_MISSING the routine center_and_band_values has not been called prior to calling the

sweep_data routine
SWEEP_INFO_MALLOC no memory for data buffer information
SWEEP_UNITS_MALLOC no memory to hold the various data levels for the data buffer
SWEEP_UNITS_REALLOC no memory for expansion of space to hold the various data levels for the data

buffer
SWEEP_SWP_MALLOC no memory for sweep values in specified units
SWEEP_SWP_REALLOC no memory for expansion of sweep values in specified units
SWEEP_DATA_MALLOC no memory for data buffer
SWEEP_WITH_FILL the modules sweep_data and fill_data cannot be used interchangeably for the

same data key, extension, version combination
BAD_VFMT bad format character for variable width bin spacing
PHI_DIFF_UNITS the sensors being processed do not process the same number of data levels

(units)
FILL_PHI_FIRST the starting azimuthal angle was not contained within any of the defined phi

bins

sweep_data (2R) sweep_data (2R)

 309 December 28, 2012

STATUS CODE EXPLANATION OF STATUS
FILL_PHI_LAST the ending azimuthal angle was not contained within any of the defined phi

bins
 error codes returned by read_drec ()
 error codes returned by convert_to_units ()
 error codes returned by fill_sensor_info ()
ALL_OKAY routine terminated successfully

DESCRIPTION

Sweep_data is the IDFS sample-averaging data read routine for sensor-specific data,
averaging num_swps sample sets (sweeps). The data set of interest is referenced through
the key value data_key which can be created using the get_data_key module.
Sweep_data processes sensor-specific data only, that is, it processes sensor, sweep step,
calibration, data quality, pitch angle, azimuthal angle, spacecraft potential and background
data. If the instrument status (mode) data is desired, the user should use the
sweep_mode_data routine. Sweep_data assumes that the data set of interest does not roll
over to a minimum value when the maximum threshold has been reached or to a maximum
value when the minimum threshold has been reached. This assumption is crucial since
multiple samples may be averaged together. If the data set does roll over at the thresholds,
the averaging of these samples will probably result in incorrect data values. An example of
a roll over data set is longitude data, which resets values to the minimum threshold (-180)
when the maximum threshold (180) has been reached. If the data set does roll over, the
user should use the sweep_discontinuous_data routine. If the data set of interest is a
combination of roll over and non-roll over data, for example, longitude data being returned
along with science data, the user may use the sweep_discontinuous_data module in
conjunction with the sweep_data routine, using the sweep_data routine to return the non-
roll over data values and using the sweep_discontinuous_data routine to return the roll
over data values. In order to do this correctly, the user must make use of multiple version
numbers so that the same data files can be opened more than once. That is, use one version
number for the non-roll over data and another version number for the roll over data. All
IDFS routines that utilize a version number must be called once for each unique version
number.

The data is processed one sweep at a time. Once the requested number of sweeps have been
processed, the routine will return the data. If the requested number of sweeps could not be
processed due to data acquisition problems (LOS_STATUS, NEXT_FILE_STATUS,
EOF_STATUS), the routine will return the data and the normalization factors will reflect
the number of sweeps processed so far. If more data is put online, the next call to the
sweep_data routine will continue to accumulate data and will continue until the remaining
sweeps have been acquired.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number

sweep_data (2R) sweep_data (2R)

 310 December 28, 2012

instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

The parameter idf_data_ptr is a pointer to the structure that is to hold all data pertinent to
the data set being processed. The structure is created and the address to this structure is
returned when a call to the create_idf_data_structure routine is made. The user also has
the option of calling the module create_data_structure, which determines what type of
data structure is needed for the IDFS data set of interest. In most cases, one data structure is
sufficient to process any number of distinct data sets. However, if more than one structure
is needed, the user may call the create_idf_data_structure routine N times to create N
instances of the idf_data structure. The user must keep track of which pointer to send to
the IDFS routines that utilize this structure.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

There are N many sub-buffers which hold the data in each of the requested data levels or
units for each sensor. The user must process the data contained within these buffers before
the next call to the sweep_data routine is made since the module will clear out these buffers
for re-use if the requested number of sweeps were processed on the previous call. The data
values must be normalized using the normalization factors returned along with the data.
The user is advised to check the value or values in the bin_stat array. If all values are 0, no
data was placed into the buffer. This can happen if the sensors rotate or alternate when data
is returned or if the data is excluded based upon d_qual or data cutoff values.

The size and spacing of the data buffer is either defined by the user or by elements
contained within the virtual instrument definition document. The user must call the
set_bin_info module before calling the sweep_data routine in order to specify how the
binning of the data is to occur. In addition, the user must call the center_and_band_values
module before calling the sweep_data module. If the sweep_data routine determines that
no binning scheme has been selected, an error code is returned to the user.

The user should be aware that the data buffer that comes back from the sweep_data routine
are NOT modified as far as missing bins is concerned. If the user wishes to fill in the
missing bins according to the method specified in the call to the set_bin_info module, the
user must call the module buffer_bin_fill. If the data are collapsed over specified
dimensions, the buffer_bin_fill module need not be called.

sweep_data (2R) sweep_data (2R)

 311 December 28, 2012

The default mode for the sweep_data routine is to return sensor data in raw units (no tables
applied) for each of the sensors processed, with data cutoff values set at -3.0e38
(VALID_MIN) and 3.0e38 (VALID_MAX). The user may select the type of data, the units
to be returned and the data cutoff values to be applied by calling the fill_sensor_info
module prior to calling the sweep_data module. The user should make one call to the
fill_sensor_info module for each sensor that is to be retrieved for each data type/units/data
cutoff combination selected.

If the virtual instrument acquires data over the PHI dimension and the user wishes to
average the data over a specified phi range, the sweep_data routine must be used to acquire
the phi data matrix. The user must call the module set_collapse_info prior to calling the
sweep_data module in order to specify the resolution of the phi bins and to specify if the
interleave option is to be utilized when building the phi matrix.

The parameter exclude_dqual holds a single value that is compared against the d_qual
value found in the header record for the sensor being processed. If the user wishes to
exclude data that is flagged with a specific d_qual value, the user should set the
exclude_dqual value to this specific value. If the user wishes to include all data
encountered, the user should set the exclude_dqual value to 255.

ERRORS

All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

file_open 1R
read_drec 1R
convert_to_units 1R
sweep_discontinuous_data 2R
sweep_mode_data 2R
set_bin_info 2R
center_and_band_values 2R
fill_sensor_info 2R
buffer_bin_fill 2R
set_collapse_info 2R
get_data_key 1R
get_version_number 1R
create_data_structure 1R
create_idf_data_structure 1R
ret_codes 1H
libtrec_idfs 2H

BUGS

None

sweep_data (2R) sweep_data (2R)

 312 December 28, 2012

EXAMPLES
Obtain data one sweep at a time from the virtual instrument RTLA, which is part of the
RETE instrument/experiment, which is part of the TSS-1 mission, which is identified with
the TSS project.

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_FLOAT *ret_data, *ret_frac;
SDDAS_LONG start_time_sec, start_time_nano, end_time_sec, end_time_nano;
SDDAS_SHORT start_time_yr, start_time_day, end_time_yr, end_time_day;
SDDAS_SHORT status, *sen_numbers, num_sen, *num_units, data_block;
SDDAS_CHAR *ret_bin, hdr_change, complete_acq;
void *idf_data_ptr;

status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

status = create_idf_data_structure (&idf_data_ptr);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by create_idf_data_structure routine.\n", status);
 exit (-1);
 }

status = sweep_data (data_key, "", vnum, idf_data_ptr, 1, &sen_numbers, &ret_data,
 &ret_frac, &ret_bin, &num_sen, &num_units, &data_block,
 &start_time_yr, &start_time_day, &start_time_sec,
 &start_time_nano, &end_time_yr, &end_time_day,
 &end_time_sec, &end_time_nano, &hdr_change, 255,

&complete_acq);

if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by sweep_data routine.\n", status);
 exit (-1);
 }

sweep_discontinuous_data (2R) sweep_discontinuous_data (2R)

 313 December 28, 2012

SWEEP_DISCONTINUOUS_DATA
function - returns sample-averaged sensor-specific data for data sets that roll over to a
minimum value when the maximum threshold has been reached

SYNOPSIS

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT sweep_discontinuous_data (SDDAS_ULONG data_key,
 SDDAS_CHAR *exten, SDDAS_USHORT version,
 void *idf_data_ptr, SDDAS_LONG num_swps,
 SDDAS_SHORT **ret_sensors, SDDAS_FLOAT **ret_data,
 SDDAS_FLOAT **ret_frac, SDDAS_CHAR **bin_stat,
 SDDAS_SHORT *num_sen, SDDAS_SHORT **num_units,
 SDDAS_SHORT *block_size, SDDAS_SHORT *stime_yr,
 SDDAS_SHORT *stime_day, SDDAS_LONG *stime_sec,
 SDDAS_LONG *stime_nano, SDDAS_SHORT *etime_yr,
 SDDAS_SHORT *etime_day, SDDAS_LONG *etime_sec,
 SDDAS_LONG *etime_nano, SDDAS_CHAR *hdr_change,
 SDDAS_UCHAR exclude_dqual,

 SDDAS_CHAR *complete_acq)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file

names when default files are not to be used, otherwise
a null string

version - IDFS data set identification number which allows for
multiple openings of the same data set

idf_data_ptr - pointer to the idf_data structure that temporarily
holds sensor data and pertinent ancillary data for the
data set of interest for a single sweep of data

num_swps - the number of samples (sweeps) to average together
ret_sensors - an array which holds the sensor number(s) for which

data is returned
- The array is initialized to -1 in all elements; valid
 sensor numbers start with 0

ret_data - pointer to the data being returned (data for all sensors
processed)

ret_frac - pointer to the normalization factors for the data being
returned

bin_stat - pointer to status flags which are associated with each
data bin returned

0 - no data has been placed into the data
bin being processed

sweep_discontinuous_data (2R) sweep_discontinuous_data (2R)

 314 December 28, 2012

1 - data has been placed into the data bin
being processed

num_sen - the number of elements in the ret_sensors array
num_units - an array holding the number of data sets to bypass in

order to get to the data for the sensor being processed
block_size - the number of data values returned in a data buffer
stime_yr - the year value for the first sweep processed
stime_day - the day of year value for the first sweep processed
stime_sec - the time of day in seconds for the first sweep

processed
stime_nano - the time of day residual in nanoseconds for the first

sweep processed
etime_yr - the year value for the last sweep processed
etime_day - the day of year value for the last sweep processed
etime_sec - the time of day in seconds for the last sweep processed
etime_nano - the time of day residual in nanoseconds for the last

sweep processed
hdr_change - flag which indicates a header change occurred while

processing the data
0 - a header change was not encountered

during the processing of the data
1 - a header change was encountered

during the processing of the data
exclude_dqual - data is to be excluded if the d_qual flag associated

with the data is set to the value specified
complete_acq - flag which indicates if all samples (sweeps) were

acquired
 0 - not all samples were acquired
 1 - all samples were acquired

sweep_discontinuous_data - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for SWEEP_DISCONTINUOUS_DATA

STATUS CODE EXPLANATION OF STATUS
SWEEP_DISC_NOT_FOUND the requested data_key, exten, version combination has no memory

allocated for processing (user did not call file_open for this
combination)

SWEEP_DISC_BIN_MISSING the data binning information has not been allocated (user did not call
set_bin_info for this combination)

SWEEP_DISC_CENTER_BAND_MISSING the routine center_and_band_values has not been called prior to
calling the sweep_discontinuous_data routine

SWEEP_DISC_NO_PHI data sets with PHI, MASS and/or CHARGE dimensions are not
supported

FILL_ARRAY_MALLOC no memory for structure which hold information pertinent to the
sample-averaged data

FILL_DISC_MALLOC no memory for fill_discontinuous structure
FILL_INFO_MALLOC no memory for data buffer information
FILL_UNITS_MALLOC no memory to hold the various data levels for the data buffers

sweep_discontinuous_data (2R) sweep_discontinuous_data (2R)

 315 December 28, 2012

STATUS CODE EXPLANATION OF STATUS
FILL_UNITS_REALLOC no memory for expansion of space to hold the various data levels for

the data buffers
FILL_SWP_MALLOC no memory for sweep values in specified units
FILL_SWP_REALLOC no memory for expansion of sweep values in specified units
FILL_DATA_MALLOC no memory for data buffers
SWEEP_INFO_MALLOC no memory for data buffer information
SWEEP_DATA_MALLOC no memory for data buffer
SWEEP_UNITS_MALLOC no memory to hold the various data levels for the data buffer
SWEEP_UNITS_REALLOC no memory for expansion of space to hold the various data levels for

the data buffer
SWEEP_SWP_MALLOC no memory for sweep values in specified units
SWEEP_SWP_REALLOC no memory for expansion of sweep values in specified units
DISC_DATA_MALLOC no memory for the internal data buffers that are pertinent only to

discontinuous data sets
SWEEP_DISC_WITH_FILL the modules sweep_discontinuous_data and fill_discontinuous_data

cannot be used interchangeably for the same data key, extension,
version combination

BAD_VFMT bad format character for variable width bin spacing
DISC_TMP_MALLOC no memory for scratch space utilized to process discontinuous data

sets
 error codes returned by read_drec ()
 error codes returned by convert_to_units ()
 error codes returned by fill_sensor_info ()
ALL_OKAY routine terminated successfully

DESCRIPTION

Sweep_discontinuous_data is the IDFS sample-averaging read routine for discontinuous
sensor-specific data, averaging num_swps sample sets (sweeps). The data set of interest is
referenced through the key value data_key which can be created using the get_data_key
module. Sweep_discontinuous_data processes sensor-specific data only, that is, it
processes sensor, sweep step, calibration, data quality, pitch angle, azimuthal angle,
spacecraft potential and background data. If the instrument status (mode) data is desired,
the user should use the sweep_mode_data routine. Sweep_discontinuous_data assumes
that the data set of interest rolls over to a minimum value when the maximum threshold has
been reached or to a maximum value when the minimum threshold has been reached. This
assumption is crucial since multiple samples may be averaged together. Before each sample
is added to the buffer, a check is made to see if a "boundary" or threshold has been crossed.
If so, the value is adjusted so that the addition of the values result in a correct averaged
value. Currently, these threshold values are preset at -180 (minimum threshold) and 180
(maximum threshold). If the data set does not roll over, the user should use the
sweep_data routine. If the data set of interest is a combination of roll over and non-roll
over data, for example, longitude data being returned along with science data, the user may
use the sweep_discontinuous_data module in conjunction with the sweep_data routine,
using the sweep_data routine to return the non-roll over data values and using the
sweep_discontinuous_data routine to return the roll over data values. In order to do this
correctly, the user must make use of multiple version numbers so that the same data files
can be opened more than once. That is, use one version number for the non-roll over data

sweep_discontinuous_data (2R) sweep_discontinuous_data (2R)

 316 December 28, 2012

and another version number for the roll over data. All IDFS routines that utilize a version
number must be called once for each unique version number.

The data is processed one sweep at a time. Once the requested number of sweeps have been
processed, the routine will return the data. If the requested number of sweeps could not be
processed due to data acquisition problems (LOS_STATUS, NEXT_FILE_STATUS,
EOF_STATUS), the routine will return the data and the normalization factors will reflect
the number of sweeps processed so far. If more data is put online, the next call to the
sweep_discontinuous_data routine will continue to accumulate data and will continue until
the remaining sweeps have been acquired.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

The parameter idf_data_ptr is a pointer to the structure that is to hold all data pertinent to
the data set being processed. The structure is created and the address to this structure is
returned when a call to the create_idf_data_structure routine is made. The user also has
the option of calling the module create_data_structure, which determines what type of
data structure is needed for the IDFS data set of interest. In most cases, one data structure is
sufficient to process any number of distinct data sets. However, if more than one structure
is needed, the user may call the create_idf_data_structure routine N times to create N
instances of the idf_data structure. The user must keep track of which pointer to send to
the IDFS routines that utilize this structure.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

There are N many sub-buffers which hold the data in each of the requested data levels or
units for each sensor. The user must process the data contained within these buffers before
the next call to the sweep_discontinuous_data routine is made since the module will clear
out these buffers for re-use if the requested number of sweeps were processed on the

sweep_discontinuous_data (2R) sweep_discontinuous_data (2R)

 317 December 28, 2012

previous call. The data values must be normalized using the normalization factors returned
along with the data. The user is advised to check the value or values in the bin_stat array.
If all values are 0, no data was placed into the buffer. This can happen if the sensors rotate
or alternate when data is returned or if the data is excluded based upon d_qual or data cutoff
values.

The size and spacing of the data buffer is either defined by the user or by elements
contained within the virtual instrument definition document. The user must call the
set_bin_info module before calling the sweep_discontinuous_data routine in order to
specify how the binning of the data is to occur. In addition, the user must call the
center_and_band_values module before calling the sweep_discontinuous_data module.
If the sweep_discontinuous_data routine determines that no binning scheme has been
selected, an error code is returned to the user.

The user should be aware that the data buffer that comes back from the
sweep_discontinuous_data routine are NOT modified as far as missing bins is concerned.
If the user wishes to fill in the missing bins according to the method specified in the call to
the set_bin_info routine, the user must call the module buffer_bin_fill. If the data are
collapsed over specified dimensions, the buffer_bin_fill module need not be called. The
user should be advised that the sweep_discontinuous_data routine can not process data
sets with a PHI, MASS and/or CHARGE dimensionality.

The default mode for the sweep_discontinuous_data routine is to return sensor data in raw
units (no tables applied) for each of the sensors processed, with data cutoff values set at
-3.0e38 (VALID_MIN) and 3.0e38 (VALID_MAX). The user may select the type of data,
the units to be returned and the data cutoff values to be applied by calling the
fill_sensor_info module prior to calling the sweep_discontinuous_data module. The user
should make one call to the fill_sensor_info module for each sensor that is to be retrieved
for each data type/units/data cutoff combination selected.

The parameter exclude_dqual holds a single value that is compared against the d_qual
value found in the header record for the sensor being processed. If the user wishes to
exclude data that is flagged with a specific d_qual value, the user should set the
exclude_dqual value to this specific value. If the user wishes to include all data
encountered, the user should set the exclude_dqual value to 255.

ERRORS

All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

file_open 1R
read_drec 1R
convert_to_units 1R

sweep_discontinuous_data (2R) sweep_discontinuous_data (2R)

 318 December 28, 2012

sweep_data 2R
sweep_mode_data 2R
set_bin_info 2R
center_and_band_values 2R
fill_sensor_info 2R
buffer_bin_fill 2R
get_data_key 1R
get_version_number 1R
create_data_structure 1R
create_idf_data_structure 1R
ret_codes 1H
libtrec_idfs 2H

BUGS

None

EXAMPLES

Obtain discontinuous data one sweep at a time from the virtual instrument RTLA, which is
part of the RETE instrument/experiment, which is part of the TSS-1 mission, which is
identified with the TSS project.

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_FLOAT *ret_data, *ret_frac;
SDDAS_LONG start_time_sec, start_time_nano, end_time_sec, end_time_nano;
SDDAS_SHORT start_time_yr, start_time_day, end_time_yr, end_time_day;
SDDAS_SHORT status, *sen_numbers, num_sen, *num_units, data_block;
SDDAS_CHAR *ret_bin, hdr_change, complete_acq;
void *idf_data_ptr;

status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

status = create_idf_data_structure (&idf_data_ptr);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by create_idf_data_structure routine.\n",
 status);

sweep_discontinuous_data (2R) sweep_discontinuous_data (2R)

 319 December 28, 2012

 exit (-1);
 }

status = sweep_discontinuous_data (data_key, "", vnum, idf_data_ptr, 1,
 &sen_numbers, &ret_data, &ret_frac, &ret_bin, &num_sen,
 &num_units, &data_block, &start_time_yr, &start_time_day,
 &start_time_sec, &start_time_nano, &end_time_yr, &end_time_day,
 &end_time_sec, &end_time_nano, &hdr_change, 255,

 &complete_acq);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by sweep_discontinuous_data routine.\n", status);
 exit (-1);
 }

sweep_discontinuous_data (2R) sweep_discontinuous_data (2R)

 320 December 28, 2012

sweep_mode_data (2R) sweep_mode_data (2R)

 321 December 28, 2012

SWEEP_MODE_DATA
function - returns sample-averaged instrument status (mode) data

SYNOPSIS

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_SHORT sweep_mode_data (SDDAS_ULONG data_key,

 SDDAS_CHAR *exten, SDDAS_USHORT version,
 void *idf_data_ptr, SDDAS_LONG num_swps,
 SDDAS_SHORT **ret_modes, SDDAS_FLOAT **ret_data,

 SDDAS_FLOAT **ret_frac, SDDAS_CHAR **bin_stat,
 SDDAS_SHORT *num_modes,
 SDDAS_SHORT **num_units, SDDAS_SHORT *block_size,
 SDDAS_SHORT *stime_yr, SDDAS_SHORT *stime_day,
 SDDAS_LONG *stime_sec, SDDAS_LONG *stime_nano,
 SDDAS_SHORT *etime_yr, SDDAS_SHORT *etime_day,
 SDDAS_LONG *etime_sec, SDDAS_LONG *etime_nano,
 SDDAS_CHAR *hdr_change, SDDAS_CHAR *complete_acq)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file names when

default files are not to be used, otherwise a null string
version - IDFS data set identification number which allows for multiple

openings of the same data set
idf_data_ptr - pointer to the idf_data structure that temporarily holds sensor

data and pertinent ancillary data for the data set of interest for
a single sweep of data

num_swps - the number of samples (sweeps) to average together
ret_modes - an array which holds the instrument status (mode) bytes for

which data is returned
- the array is initialized to -1 in all elements;

valid mode numbers start with 0
ret_data - pointer to the data being returned (data for all modes

processed)
ret_frac - pointer to the normalization factors for the data being returned
bin_stat - pointer to status flags which are associated with each data bin

returned
0 - no data has been placed into the data

bin being processed
1 - data has been placed into the data bin

being processed
num_modes - the number of elements in the ret_modes array

sweep_mode_data (2R) sweep_mode_data (2R)

 322 December 28, 2012

num_units - an array holding the number of data sets to bypass in order to
get to the data for the instrument status (mode) value being
processed

block_size - the number of data values returned in a data buffer
stime_yr - the year value for the first sweep processed
stime_day - the day of year value for the first sweep processed
stime_sec - the time of day in seconds for the first sweep processed
stime_nano - the time of day residual in nanoseconds for the first sweep

processed
etime_yr - the year value for the last sweep processed
etime_day - the day of year value for the last sweep processed
etime_sec - the time of day in seconds for the last sweep processed
etime_nano - the time of day residual in nanoseconds for the last sweep

processed
hdr_change - flag which indicates a header change occurred while

processing the data
0 - a header change was not encountered

during the processing of the data
1 - a header change was encountered

during the processing of the data
complete_acq - flag which indicates if all samples (sweeps) were acquired

 0 - not all samples were acquired
 1 - all samples were acquired

sweep_mode_data - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for SWEEP_MODE_DATA

STATUS CODE EXPLANATION OF STATUS
SWEEP_MODE_NOT_FOUND the requested data_key, exten, version combination has no memory

allocated for processing (user did not call file_open for this combination)
SWEEP_MODE_FILE_OPEN the user did not request mode data processing when file_open was called
SWEEP_MODE_INFO_DUP the requested data_key, exten, version combination has no memory

allocated for the instrument status information
SWEEP_MODES_NOT_REQUESTED the user did not call fill_mode_info for this combination
FILL_MODE_ARRAY_MALLOC no memory for structure which hold information pertinent to the sample-

averaged data
ALLOC_SMODE_INFO_MALLOC no memory for data buffer information
SMODE_UNITS_MALLOC no memory to hold the various data levels for the data buffer
SMODE_UNITS_REALLOC no memory for expansion of space to hold the various data levels for the

data buffer
SMODE_DATA_MALLOC no memory for data buffer
SWEEP_MODE_WITH_FILL the modules sweep_mode_data and fill_mode_data cannot be used

interchangeably for the same data key, extension, version combination
 error codes returned by read_drec ()
 error codes returned by convert_to_units ()
ALL_OKAY routine terminated successfully

sweep_mode_data (2R) sweep_mode_data (2R)

 323 December 28, 2012

DESCRIPTION
Sweep_mode_data is the IDFS sample-averaging data read routine for instrument status
(mode) values, averaging num_swps sample sets (sweeps). The data set of interest is
referenced through the key value data_key which can be created using the get_data_key
module. Sweep_mode_data processes instrument status data only. If sensor-specific data
is desired, that is, sensor, sweep step, calibration, data quality, pitch angle, azimuthal angle
spacecraft potential and / or background data, the user should use the sweep_data /
sweep_discontinuous_data routine(s).

The data is processed one sweep at a time. Once the requested number of sweeps have been
processed, the routine will return the mode data. If the requested number of sweeps could
not be processed due to data acquisition problems (LOS_STATUS, NEXT_FILE_STATUS,
EOF_STATUS), the routine will return the data and the normalization factors will reflect
the number of sweeps processed so far. If more data is put online, the next call to the
sweep_mode_data routine will continue to accumulate data and will continue until the
remaining sweeps have been acquired.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

The parameter idf_data_ptr is a pointer to the structure that is to hold all data pertinent to
the data set being processed. The structure is created and the address to this structure is
returned when a call to the create_idf_data_structure routine is made. The user also has
the option of calling the module create_data_structure, which determines what type of
data structure is needed for the IDFS data set of interest. In most cases, one data structure is
sufficient to process any number of distinct data sets. However, if more than one structure
is needed, the user may call the create_idf_data_structure routine N times to create N
instances of the idf_data structure. The user must keep track of which pointer to send to
the IDFS routines that utilize this structure.

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null

sweep_mode_data (2R) sweep_mode_data (2R)

 324 December 28, 2012

string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

There are N many sub-buffers which hold the data in each of the requested data levels or
units for each mode. The user must process the data contained within these buffers before
the next call to the sweep_mode_data routine is made since the module will clear out these
buffers for re-use if the requested number of sweeps were processed on the previous call.
The data values must be normalized using the normalization factors returned along with the
data. The user is advised to check the value or values in the bin_stat array. If all values are
0, no data was placed into the buffer. This can happen if the status bytes rotate or alternate
when data is returned.

In order to utilize the sweep_mode_data routine, the user must select the units to be
returned and the data cutoff values to be applied by calling the fill_mode_info module prior
to calling the sweep_mode_data module. The user should make one call to the
fill_mode_info module for each instrument status byte that is to be retrieved for each
units/data cutoff combination selected. If the sweep_mode_data routine determines that
the fill_mode_info module was never called, an error code is returned.

ERRORS

All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

file_open 1R
read_drec 1R
convert_to_units 1R
sweep_data 2R
sweep_discontinuous_data 2R
fill_mode_info 2R
get_data_key 1R
get_version_number 1R
create_data_structure 1R
create_idf_data_structure 1R
ret_codes 1H
libtrec_idfs 2H

BUGS

None

EXAMPLES

Obtain instrument status values one sweep at a time from the virtual instrument RTLA,
which is part of the RETE instrument/experiment, which is part of the TSS-1 mission,
which is identified with the TSS project.

sweep_mode_data (2R) sweep_mode_data (2R)

 325 December 28, 2012

#include "libtrec_idfs.h"
#include "ret_codes.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_FLOAT *ret_data, *ret_frac;
SDDAS_LONG start_time_sec, start_time_nano, end_time_sec, end_time_nano;
SDDAS_SHORT start_time_yr, start_time_day, end_time_yr, end_time_day;
SDDAS_SHORT status, *mode_numbers, num_modes, *num_units, data_block;
SDDAS_CHAR *ret_bin, hdr_change, complete_acq;
void *idf_data_ptr;

status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

status = create_idf_data_structure (&idf_data_ptr);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by create_idf_data_structure routine.\n", status);
 exit (-1);
 }

status = sweep_mode_data (data_key, "", vnum, idf_data_ptr, 1, &mode_numbers,
 &ret_data, &ret_frac, &ret_bin, &num_modes, &num_units,
 &data_block, &start_time_yr, &start_time_day,
 &start_time_sec, &start_time_nano, &end_time_yr, &end_time_day,
 &end_time_sec, &end_time_nano, &hdr_change, &complete_acq);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by sweep_mode_data routine.\n", status);
 exit (-1);
 }

sweep_mode_data (2R) sweep_mode_data (2R)

 326 December 28, 2012

units_index (2R) units_index (2R)

 327 December 28, 2012

UNITS_INDEX
function - returns index values to access the data returned by the time-averaging, sample-
averaging, and spin-averaging modules for the data type/cutoff/units combination specified

SYNOPSIS

#include "libtrec_idfs.h"
#include "ret_codes.h"
#include "user_defs.h"

SDDAS_SHORT units_index (SDDAS_ULONG data_key, SDDAS_CHAR *exten,
 SDDAS_USHORT version, SDDAS_SHORT sensor,
 SDDAS_FLOAT min, SDDAS_FLOAT max,
 SDDAS_CHAR *tbls_to_apply, SDDAS_LONG *tbl_oper,
 SDDAS_CHAR data_type, SDDAS_CHAR cal_set,
 SDDAS_SHORT *units_ind, SDDAS_SHORT *num_units,
 SDDAS_CHAR num_tbls)

ARGUMENTS

data_key - unique value which indicates the data set of interest
exten - two character extension to be added to IDFS file names when

default files are not to be used, otherwise a null string
version - IDFS data set identification number which allows for multiple

openings of the same data set
sensor - sensor identification number
min - the lower cutoff value for data that are to be put into the data buffers,

specified in terms of the units desired.
max - the upper cutoff value for data that are to be put into the data buffers,

specified in terms of the units desired.
tbls_to_apply - the tables that are to be applied in order to derive the desired units
tbl_oper - the operations that are to be applied to the specified tables in order to

derive the desired units
data_type - the type of data being requested

1 - sensor data (SENSOR)
2 - sweep step data (SWEEP_STEP)
3 - calibration data (CAL_DATA)
5 - data quality data (D_QUAL)
6 - pitch angle data (PITCH_ANGLE)
7 - start azimuthal angle data

(START_AZ_ANGLE)
8 - stop azimuthal angle data

(STOP_AZ_ANGLE)
 9 - spacecraft potential data (SC_POTENTIAL)

10 - background data (BACKGROUND)
cal_set - the calibration set from which requested calibration data

(CAL_DATA) is to be retrieved

units_index (2R) units_index (2R)

 328 December 28, 2012

- If calibration data is not being requested, this parameter is
not utilized and it is suggested that the user pass a value of
zero for this parameter.

units_ind - index value returned to access the correct sub-buffer returned from
the time-averaging, sample-averaging, or spin-averaging routine for
the data type/cutoff/units combination requested

num_units - the number of units or data levels defined for the sensor in question
(used as an index to get to the first buffer returned by the time-
averaging or sample-averaging routine for the sensor in question)

num_tbls - the number of elements specified in the tbls_to_apply and tbl_oper
parameters

units_index - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for UNITS_INDEX

STATUS CODE EXPLANATION OF STATUS
UNITS_IND_NOT_FOUND the requested data_key, exten, version combination has no memory allocated for

processing (user did not call file_open for this combination)
UNITS_NO_SENSOR the requested sensor was not found amongst the defined data type/cutoff/units

combinations (user did not call fill_sensor_info for this combination)
UNITS_NO_MATCH the data type/cutoff/units combination requested was not found for the specified

sensor
UNITS_IND_MODE_TYPE instrument status (mode) data is not supported by the units_index routine
ALL_OKAY routine terminated successfully

DESCRIPTION

Units_index is the IDFS routine that returns index values that are used to access the data
buffers returned by the IDFS routines that return time-averaged data (fill_data /
fill_discontinuous_data), sample-averaged data (sweep_data /
sweep_discontinuous_data), or spin-averaged data (spin_data / spin_data_pixel) for the
sensor, data type / cutoff / units combination specified. The data set of interest is referenced
through the key value data_key which can be created using the get_data_key module. The
units_index module should be used for sensor-specific data only, that is, for sensor, sweep
step, calibration, data quality, pitch angle, azimuthal angle, spacecraft potential and
background data. If instrument status (mode) data is also being processed, the user should
use the mode_units_index routine to retrieve index values to access the data buffers
returned by the fill_mode_data / sweep_mode_data routine.

The parameter version allows multiple file openings for an IDFS data set. If the data,
header and VIDF file for the specified data set need to be opened just once for processing,
the same version number should be passed to all IDFS routines. However, for multiple file
openings, the version number should be unique and all file manipulations performed by the
IDFS routines will use the file descriptors defined for the version number specified. The
user should call the get_version_number routine to retrieve a unique version number
instead of choosing this value themselves. The retrieval of multiple data parameters from a
single data source does not constitute the need for multiple version numbers; a single
version number will suffice.

units_index (2R) units_index (2R)

 329 December 28, 2012

If the file_open routine is not to open the default set of IDFS files but a modified set of
IDFS files, the two character extension applied to these data files must be supplied to this
routine within the string variable exten. These files must have the identical name as the
IDFS files with the two character identification code appended to the end of the file names
(i.e. RTLA19922181432Dxx, RTLA19922181432Hxx, RTLA19922181432Ixx). The files
must reside either in the directory specified by the environment variable USER_DATA,
which is set by the user, or in the user's home directory if the environment variable
USER_DATA is not set. To open the default IDFS data files, exten should be set to a null
string. The usage of modified data sets is limited to post acquisition data; therefore, it is
suggested that the user set exten to a null string for real-time scenarios.

The user may elect to call the units_index routine every time a return from the time-
averaging, sample-averaging, or spin-averaging routine is made or may call the units_index
routine once for each sensor, data type/cutoff/units combination requested and save the
index values into variables for later usage. In either case, the call(s) to the units_index
routine must be made after ALL calls to the fill_sensor_info routine have been made. The
user may not have called the fill_sensor_info module if the default mode for the time-
averaging, sample-averaging, or spin-averaging routine is sufficient. In this case, the user
may retrieve the index values from the units_index routine only AFTER the first call to the
time-averaging, sample-averaging, or spin-averaging routine has been made.

ERRORS

All errors within this routine are returned through the status variable. The include file
ret_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The ret_codes.h file is described in
section 1H of the IDFS Programmers Manual.

SEE ALSO

file_open 1R
fill_data 2R
fill_discontinuous_data 2R
fill_mode_data 2R
sweep_data 2R
sweep_discontinuous_data 2R
sweep_mode_data 2R
spin_data 2R
spin_data_pixel 2R
mode_units_index 2R
fill_sensor_info 2R
get_data_key 1R
get_version_number 1R
ret_codes 1H
user_defs 1H
libtrec_idfs 2H

units_index (2R) units_index (2R)

 330 December 28, 2012

BUGS
None

EXAMPLES
Retrieve the index values to access data that is returned for sensor 1 from the virtual
instrument RTLA, which is part of the RETE instrument/experiment, which is part of the
TSS-1 mission, which is identified with the TSS project. Assume that there is one table
applicable to this virtual instrument.

#include "libtrec_idfs.h"
#include "ret_codes.h"
#include "user_defs.h"

SDDAS_ULONG data_key;
SDDAS_USHORT vnum;
SDDAS_FLOAT sen_min, sen_max;
SDDAS_LONG tbl_oper[1];
SDDAS_SHORT uind_base, status, sen_units, sensor;
SDDAS_CHAR tbls_to_apply[1], num_tbls;

sen_min = VALID_MIN;
sen_max = VALID_MAX;
sensor = 1;
num_tbls = 1;
tbls_to_apply[0] = 0;
tbl_oper[0] = 0; /* look-up operation */

status = get_data_key ("TSS", "TSS-1", "RETE", "RETE", "RTLA", &data_key);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by get_data_key routine.\n", status);
 exit (-1);
 }
get_version_number (&vnum);

status = units_index (data_key, "", vnum, sensor, sen_min, sen_max,
 tbls_to_apply, tbl_oper, SENSOR, 0, &uind_base,
 &sen_units, num_tbls);

if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by units_index routine.\n", status);
 exit (-1);
 }

create_scf_data_structure (3R) create_scf_data_structure (3R)

 331 December 28, 2012

CREATE_SCF_DATA_STRUCTURE
function - creates an instance of the scf_data structure

SYNOPSIS

#include "libbase_SCF.h"
#include "SCF_codes.h"

SDDAS_SHORT create_scf_data_structure (SDDAS_CHAR *filename,
 SDDAS_USHORT scf_version,
 void **scf_data_ptr)

ARGUMENTS

filename - the name of the SCF file of interest
scf_version - SCF identification number which allows for multiple

openings of the same SCF file
scf_data_ptr - pointer to the newly created scf_data structure
create_scf_data_structure - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for CREATE_SCF_DATA_STRUCTURE

STATUS CODE EXPLANATION OF STATUS

LOCATE_SCF_NOT_FOUND the requested filename, scf_version combination has no memory allocated for
processing (user did not call scf_open for this combination)

SCF_CREATE_ALL_MALLOC no memory to hold the address of all allocated scf_data structures
SCF_CREATE_ALL_REALLOC no memory for expansion of the area that holds the address of all allocated

scf_data structures
SCF_CREATE_MALLOC no memory for the scf_data structure
SCF_OUTPUT_MALLOC no memory for the information pertaining to the values for the output variables
ALL_OKAY the routine terminated successfully

DESCRIPTION

Create_scf_data_structure creates an instance of the scf_data structure that is used by the
SCF software to return the results from the execution of the SCF algorithm. With each call
to this module, a new scf_data structure is created and the address of this structure is
returned. In order to access the elements within the scf_data structure, the user must
explicitly cast the returned void pointer to a pointer of the type struct scf_data. Before the
call to the create_scf_data_structure module can be made, a call to the routine scf_open
with the identical filename and scf_version parameters must be made; otherwise, an error
code is returned. The filename parameter includes the full pathname extension of the SCF
file being referenced and must be less than 512 characters in length.

The parameter scf_version allows multiple file openings for the same SCF file. If the SCF
file needs to be opened just once for processing, the same SCF version number should be
passed to all SCF routines. However, for multiple file openings, the SCF version number
should be unique and all file manipulations performed by the SCF routines will use the file
descriptors defined for the SCF version number specified. The user should call the
scf_version_number routine to retrieve a unique SCF version number instead of choosing

create_scf_data_structure (3R) create_scf_data_structure (3R)

 332 December 28, 2012

this value themselves. The retrieval of multiple output values from a single SCF source
does not constitute the need for multiple SCF version numbers; a single SCF version
number will suffice.

Since the SCF file dictates the number of output variables and the dimensionality of these
variables, the user should call the create_scf_data_structure routine once for each distinct
SCF file being processed. When multiple instances of the scf_data pointer are created, it is
the responsibility of the user to keep track of which pointer to send to the SCF routines that
utilize this structure. The contents of this structure is described in section 3S of the IDFS
Programmers Manual.

The address and associated memory of each scf_data structure that is created can be freed
through the free_scf_info routine. The user must not free the memory themselves since the
SCF software will attempt to free the memory location and the result is uncertain.

ERRORS

All errors within this routine are returned through the status variable. The include file
SCF_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The SCF_codes.h file is described in
section 3H of the IDFS Programmers Manual.

SEE ALSO

scf_open 3R
free_scf_info 3R
SCF_codes 3H
libbase_SCF 3H
scf_data 3S

BUGS

None

EXAMPLES

Create one instance of the scf_data structure that is to be associated with the SCF file
TMMO_EXAMPLE and return the address in the specified parameter. Cast the returned
void pointer so that elements of the scf_data structure can be referenced.

#include "libbase_SCF.h"
#include "SCF_codes.h"

struct scf_data *SCF_DATA;
SDDAS_USHORT scf_vnum;
SDDAS_SHORT status;
void *scf_data_ptr;

scf_version_number (&scf_vnum);

create_scf_data_structure (3R) create_scf_data_structure (3R)

 333 December 28, 2012

status = create_scf_data_structure ("TMMO_EXAMPLE", scf_vnum,
&scf_data_ptr);

if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by create_scf_data_structure routine.\n", status);
 exit (-1);
 }
SCF_DATA = (struct scf_data *) scf_data_ptr;

/* Print the name of the SCF file associated with this scf_data structure. */

printf ("\n SCF filename = %s", SCF_DATA->filename);

create_scf_data_structure (3R) create_scf_data_structure (3R)

 334 December 28, 2012

free_scf_info (3R) free_scf_info (3R)

 335 December 28, 2012

FREE_SCF_INFO
function - frees all the memory allocated by the SCF routines

SYNOPSIS

#include "libbase_SCF.h"

void free_scf_info (void)

ARGUMENTS

No arguments for this routine

DESCRIPTION

Free_scf_info frees all memory that has been allocated by the SCF routines. The computer
operating system normally takes care of freeing any memory before terminating the
program; however, for a clean exit, the user should call this module before exiting from the
program. In addition, the user may call this module if a total restart of the SCF software is
desired without restarting the program. In the case of a total restart, the user is advised to
call the module init_scf before any other SCF routine since the free_scf_info routine
merely frees allocated memory; it does not re-initialize variables used by the SCF software.

If any scf_data structures were created using the create_scf_data_structure routine, the
free_scf_info module will free the memory associated with elements contained in the
scf_data structure and the data structure itself. The user must not attempt to free this
memory since the SCF software will also attempt to free the memory.

ERRORS

This routine returns no status or error codes.

SEE ALSO

init_scf 3R
create_scf_data_structure 3R
libbase_SCF 3H
scf_data 3S

BUGS

None

EXAMPLES

The usage of this routine is quite simple since no parameters are needed:

#include "libbase_SCF.h"

free_scf_info ();

free_scf_info (3R) free_scf_info (3R)

 336 December 28, 2012

init_scf (3R) init_scf (3R)

 337 December 28, 2012

INIT_SCF
function - initializes the system for SCF processing

SYNOPSIS
#include "libbase_SCF.h"

void init_scf (void)

ARGUMENTS

No arguments for this routine

DESCRIPTION

Init_scf initializes the system prior to the processing of the information contained in the
SCF files. A call must be made to this routine before any other SCF routines are invoked.

Since the SCF data access software must interface with the database, calls must be made to
the dbInitialize and CfgInit modules when the init_scf module is called. The user is
referred to the webpages http://cluster/libdbSQL.html and http://cluster/libCfg.html for an
explanation of these routines.

ERRORS

This routine returns no status or error codes.

BUGS

None

EXAMPLES

The usage of this routine is quite simple since no parameters are needed:

#include "libbase_SCF.h"

CfgInit ();
dbInitialize ();
init_scf ();

http://cluster/libdbSQL.html
http://cluster/libCfg.html

init_scf (3R) init_scf (3R)

 338 December 28, 2012

load_scf (3R) load_scf (3R)

 339 December 28, 2012

LOAD_SCF
function - loads the contents of the SCF file

SYNOPSIS

#include "libbase_SCF.h"
#include "SCF_codes.h"

SDDAS_SHORT load_scf (SDDAS_CHAR *filename, SDDAS_USHORT scf_version,
 SDDAS_SHORT btime_yr, SDDAS_SHORT btime_day,
 SDDAS_LONG btime_sec, SDDAS_LONG btime_nano,
 SDDAS_SHORT etime_yr, SDDAS_SHORT etime_day,
 SDDAS_LONG etime_sec, SDDAS_LONG etime_nano)

ARGUMENTS

filename - the name of the SCF file of interest
scf_version - SCF identification number which allows for multiple

openings of the same SCF file
btime_yr - the start year for IDFS data access
btime_day - the start day of year for IDFS data access
btime_sec - the start time of day in seconds for IDFS data access
btime_nano - the start time of day residual in nanoseconds
etime_yr - the end year for IDFS data access
etime_day - the end day of year for IDFS data access
etime_sec - the end time of day in seconds for IDFS data access
etime_nano - the end time of day residual in nanoseconds
load_scf - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for LOAD_SCF

STATUS CODE EXPLANATION OF STATUS

NO_SCF_FILE error opening the specified SCF file
LOCATE_SCF_MALLOC no memory for SCF definition structure
LOCATE_SCF_REALLOC no memory for expansion of SCF definition structure
SCF_CONTACT_MALLOC no memory for contact information contained in SCF file
SCF_COMMENTS_MALLOC no memory for comment information contained in SCF file
SCF_INPUTS_MALLOC no memory for SCF input variable structure
SCF_INPUT_TBL_MALLOC no memory for unit conversion information for input variables
SCF_TEMP_MALLOC no memory for SCF temporary variable structure
SCF_OUTPUT_VAR_MALLOC no memory for SCF output variable structure
SCF_EQNS_MALLOC no memory for equations structure
SCF_EQNS_REALLOC no memory for expansion of equations structure
SCF_ARGS_MALLOC no memory for the arguments/operands specified in the equations
SCF_INDEX_MALLOC no memory for index variable information
SCF_MAP_MALLOC no memory for the map of all defined variables
SCF_VOID the function specified is a void function – no resultant variable should be specified
SCF_NON_VOID the function specified is a non-void function – the resultant variable is missing

from the equation
SCF_NUM_ARGS incorrect number of arguments specified for function call

load_scf (3R) load_scf (3R)

 340 December 28, 2012

STATUS CODE EXPLANATION OF STATUS
SCF_RES_LENGTH invalid length for the resultant variable
SCF_ARG_RANK the dimension of the argument/operand is invalid for the function/operator

specified
SCF_RES_RANK the dimension of the resultant variable does not match the dimension returned by

the function/operator specified
SCF_NO_INDEX the argument specified must not be an indexed variable
VIDF_OPEN_PTR_MALLOC no memory for IDFS location pointers
VIDF_OPEN_EX_REALLOC no memory for experiment definition structure expansion
NO_DATA there is no VIDF available for the requested time period
SCF_SIZE_MISMATCH the matrix size for all dimensions must be the same for the resultant and the

arguments in the equation
SCF_MASK_LENGTHS invalid dimension sizes for the resultant and arguments in the equation
SCF_SQUARE_ARG the argument matrix in the equation is not a square matrix
SCF_SQUARE_RES the resultant matrix in the equation is not a square matrix
SCF_AORDER_MISMATCH the order values are not compliant for the arguments in the equation
SCF_RORDER_MISMATCH the order value for the resultant is not compliant with arguments in the equation
SCF_NO_FUNCTION the function being requested is not a registered function
SCF_DIMEN_MALLOC no memory for the multi-dimensional data array
SCF_TENSOR_MANY_ARGS there are more than 10 arguments defined for the tensor function
SCF_TENSOR_SAME_RANK the resultant and the arguments must be the same rank for the tensor function used
SCF_TSIZE_MISMATCH the matrix size of the resultant is invalid for the selected matrix operation
ALL_OKAY the routine terminated successfully

Load_scf utilizes the file_open and get_data_key IDFS read routines. For a complete listing of
the error codes returned by these modules, the user is referred to section 1R of the IDFS
Programmers Manual.

DESCRIPTION

Load_scf opens and loads the contents of the SCF file. The SCF file of interest is
referenced through the parameter filename. The filename parameter includes the full
pathname extension of the SCF file being referenced and must be less than 512 characters in
length. This routine needs a start and stop time in order to retrieve information from the
VIDF file for the IDFS data sets utilized as input variables. This routine is used when the
user is only concerned with accessing the contents of the SCF, not with the execution of the
algorithm contained in the SCF file. If the user intends to execute the algorithm, the user
should use the scf_open routine which calls the load_scf routine in addition to opening the
IDFS data sets that are pertinent to the SCF file being processed. In either case, once the
contents of the SCF file has been loaded, the user may call the read_scf routine to retrieve
information from the SCF file.

The parameter scf_version allows multiple file openings for the same SCF file. If the SCF
file needs to be opened just once for processing, the same SCF version number should be
passed to all SCF routines. However, for multiple file openings, the SCF version number
should be unique and all file manipulations performed by the SCF routines will use the file
descriptors defined for the SCF version number specified. The user should call the
scf_version_number routine to retrieve a unique SCF version number instead of choosing
this value themselves. The retrieval of multiple output values from a single SCF source

load_scf (3R) load_scf (3R)

 341 December 28, 2012

does not constitute the need for multiple SCF version numbers; a single SCF version
number will suffice.

ERRORS

All errors within this routine are returned through the status variable. The include file
SCF_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The SCF_codes.h file is described in
section 3H of the IDFS Programmers Manual.

SEE ALSO

scf_open 3R
read_scf 3R
scf_version_number 3R
SCF_codes 3H
libbase_SCF 3H

BUGS
None

EXAMPLES

Retrieve the contents of the SCF file TMMO_EXAMPLE.

#include "libbase_SCF.h"
#include "SCF_codes.h"

SDDAS_LONG btime_sec, btime_nsec, etime_sec, etime_nsec;
SDDAS_USHORT scf_vnum;
SDDAS_SHORT status, btime_yr, btime_day, etime_yr, etime_day;

btime_yr = 1992;
btime_day = 217;
btime_sec = 32340;
btime_nsec = 0;
etime_yr = 1992;
etime_day = 217;
etime_sec = 32342;
etime_nsec = 0;

scf_version_number (&scf_vnum);
status = load_scf ("TMMO_EXAMPLE", scf_vnum, btime_yr, btime_day, btime_sec,

 btime_nsec, etime_yr, etime_day, etime_sec, etime_nsec);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by load_scf routine.\n", status);
 exit (-1);
 }

load_scf (3R) load_scf (3R)

 342 December 28, 2012

read_scf (3R) read_scf (3R)

 343 December 28, 2012

READ_SCF
function - retrieve information from the SCF file

SYNOPSIS

#include "libbase_SCF.h"
#include "SCF_file_defs.h"
#include "SCF_codes.h"

SDDAS_SHORT read_scf (SDDAS_CHAR *filename, SDDAS_USHORT scf_version,
 SDDAS_LONG field, SDDAS_LONG which_src,
 SDDAS_CHAR *var)

ARGUMENTS

filename - the name of the SCF file of interest
scf_version - SCF identification number which allows for multiple

openings of the same SCF file
field - specified field in the SCF file
which_src - the variable or equation definition from which the

required field is to be retrieved
var - output value(s) associated with the selected field
read_scf - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for READ_SCF

STATUS CODE EXPLANATION OF STATUS

LOCATE_SCF_NOT_FOUND the requested filename, scf_version combination has no memory allocated for
processing (user did not call scf_open or load_scf for this combination)

READ_SCF_BAD_INPUT invalid input variable reference number (bad value for which_src parameter
READ_SCF_BAD_DSRC error encountered for the IDFS data source specified for the input variable
READ_SCF_BAD_FIELD the information requested is not relevant for the variable referenced
READ_SCF_BAD_TEMP invalid temporary variable reference number (bad value for which_src parameter)
READ_SCF_NO_DIMEN dimension length(s) is not pertinent for scalar quantities
READ_SCF_BAD_OUTPUT invalid output variable reference number (bad value for which_src parameter)
READ_SCF_BAD_EQNS invalid equation number (bad value for which_src parameter)
READ_SCF_ELSE_INFO the information requested is not pertinent to the equation (there is no ELSE

component for the equation in question)
READ_SCF_BAD_FUNCTION invalid function used in the equation number referenced
READ_SCF_BAD_INDEX invalid variable name as index value in the equation referenced
READ_SCF_BAD_TOKEN invalid variable name in the equation number reference
READ_SCF_NO_TOKEN the field being requested is not defined
ALL_OKAY the routine terminated successfully

DESCRIPTION

Read_scf returns data for a selected field within the SCF file. The SCF file of interest is
referenced through the parameter filename. The filename parameter includes the full
pathname extension of the SCF file being referenced and must be less than 512 characters in
length. The value of interest is indicated through the field number (field). A list of field
numbers together with a set of built-in acronyms which can be used as input to this routine

read_scf (3R) read_scf (3R)

 344 December 28, 2012

are found in the SCF_file_defs.h file. This file is described in section 3H of the IDFS
Programmers Manual. If the field being requested is associated with an input variable,
temporary variable, output variable or equation definition, the variable or equation from
which the data is to be retrieved is indicated through the parameter which_src. If the field
being requested is not associated with a variable or equation definition, this parameter value
is ignored by this routine; therefore, any value can be passed in for this parameter (the
acronym NOT_USED is suggested).

The parameter scf_version allows multiple file openings for the same SCF file. If the SCF
file needs to be opened just once for processing, the same SCF version number should be
passed to all SCF routines. However, for multiple file openings, the SCF version number
should be unique and all file manipulations performed by the SCF routines will use the file
descriptors defined for the SCF version number specified. The user should call the
scf_version_number routine to retrieve a unique SCF version number instead of choosing
this value themselves. The retrieval of multiple output values from a single SCF source
does not constitute the need for multiple SCF version numbers; a single SCF version
number will suffice.

The routine returns data through the variable var. The variable var should be of the format
of the data being requested (e.g., SDDAS_FLOAT, SDDAS_LONG, SDDAS_CHAR, etc.)
and is cast as a character pointer when input into the routine. If the field being returned is
an array field, var must be of sufficient size to hold the entire length of the data requested.
The routine does not know internally whether a requested variable is an array or a single
variable. This determination and the appropriate action must be taken by the calling
routine. Prior to calling the read_scf routine, a call to either the scf_open or load_scf
routine must have been made with the same filename and scf_version designations to open
and load the contents of the appropriate SCF file.

ERRORS

All errors within this routine are returned through the status variable. The include file
SCF_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The SCF_codes.h file is described in
section 3H of the IDFS Programmers Manual.

SEE ALSO

scf_open 3R
load_scf 3R
scf_version_number 3R
SCF_file_defs 3H
SCF_codes 3H
libbase_SCF 3H

BUGS

None

read_scf (3R) read_scf (3R)

 345 December 28, 2012

EXAMPLES
Obtain the number of equations defined in the SCF file TMMO_EXAMPLE. The number
of equations is returned in the variable num_of. Since this field does not pertain to an
individual variable or equation, the acronym NOT_USED is passed for the which_src
parameter. Once that information is known, retrieve the equations, one at a time.

#include "libbase_SCF.h"
#include "SCF_file_defs.h"
#include "SCF_codes.h"

register SDDAS_LONG i;
SDDAS_USHORT scf_vnum;
SDDAS_LONG btime_sec, btime_nsec, etime_sec, etime_nsec, num_of;
SDDAS_SHORT status, btime_yr, btime_day, etime_yr, etime_day;
SDDAS_CHAR string[90];

btime_yr = 1992;
btime_day = 217;
btime_sec = 32340;
btime_nsec = 0;
etime_yr = 1992;
etime_day = 217;
etime_sec = 32342;
etime_nsec = 0;

scf_version_number (&scf_vnum);
status = load_scf ("TMMO_EXAMPLE", scf_vnum, btime_yr, btime_day, btime_sec,

 btime_nsec, etime_yr, etime_day, etime_sec, etime_nsec);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by load_scf routine.\n", status);
 exit (-1);
 }

status = read_scf ("TMMO_EXAMPLE", scf_vnum, S_NUM_EQNS, NOT_USED,
 (SDDAS_CHAR *) &num_of);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by read_scf routine.\n", status);
 exit (-1);
 }

for (i = 0; i < num_of; ++i)
 {
 status = read_scf ("TMMO_EXAMPLE", scf_vnum, S_EQUATION, i,
 (SDDAS_CHAR*) string);

read_scf (3R) read_scf (3R)

 346 December 28, 2012

 if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by read_scf routine.\n", status);
 exit (-1);
 }
 printf ("Equation %ld : %s\n", i, string);
 }

scf_open (3R) scf_open (3R)

 347 December 28, 2012

SCF_OPEN
function - loads the contents of the SCF file and opens all IDFS data sets identified as input
variables

SYNOPSIS

#include "libbase_SCF.h"
#include "SCF_codes.h"

SDDAS_SHORT scf_open (SDDAS_CHAR *filename, SDDAS_USHORT scf_version,
 SDDAS_SHORT btime_yr, SDDAS_SHORT btime_day,
 SDDAS_LONG btime_sec, SDDAS_LONG btime_nano,
 SDDAS_SHORT etime_yr, SDDAS_SHORT etime_day,
 SDDAS_LONG etime_sec, SDDAS_LONG etime_nano)

ARGUMENTS

filename - the name of the SCF file of interest
scf_version - SCF identification number which allows for multiple

openings of the same SCF file
btime_yr - the year at which algorithm execution is to commence
btime_day - the day of year at which algorithm execution is to commence
btime_sec - the time of day in seconds at which algorithm execution is to

commence
btime_nano - the time of day residual in nanoseconds
etime_yr - the year at which algorithm execution is to terminate
etime_day - the day of year at which algorithm execution is to terminate
etime_sec - the time of day in seconds at which algorithm execution is to

terminate
etime_nano - the time of day residual in nanoseconds
scf_open - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for SCF_OPEN

STATUS CODE EXPLANATION OF STATUS

SCF_OPEN_RTIME the SCF software does not support real-time processing
SCF_MATRIX_MALLOC no memory for the data matrix that holds data for all defined variables
SCF_OPEN_ERROR error returned from call to file_open for specified input variables
SCF_ALLOC_PLOT_LOC no memory for structure that holds timing information
SCF_REALLOC_PLOT_LOC no memory for expansion of structure that holds timing information
SCF_FRAC_MALLOC no memory for normalization factors for the data for the input variables
 Error codes returned by file_open ()
 Error codes returned by get_data_key ()
 Error codes returned by create_idf_data_structure ()
 Error codes returned by load_scf ()
ALL_OKAY the routine terminated successfully

scf_open (3R) scf_open (3R)

 348 December 28, 2012

Scf_open utilizes the file_open, get_data_key and create_idf_data_structure IDFS read routines.
For a complete listing of the error codes returned by these modules, the user is referred to section
1R of the IDFS Programmers Manual.

DESCRIPTION

Scf_open opens and loads the contents of the SCF files and all referenced IDFS data sets.
The SCF file of interest is referenced through the parameter filename. The filename
parameter includes the full pathname extension of the SCF file being referenced and must
be less than 512 characters in length. Once the contents of the specified SCF file is loaded,
an attempt is made to open the IDFS data set(s) that are specified as the sources for the
input variables. The SCF file itself has no dependence on time; that is, the algorithm can be
applied to data taken at any time. However, the IDFS data files that are opened, the header,
data, and VIDF file, are dependent on the time range specified. The appropriate IDFS data
files are searched for within the current on-line database. If the files do exist on the local
machine, the files are opened. If the files do not exist on the local machine, an error code is
returned since this routine does not autopromote needed, but off-line, data. This routine
opens the first set of IDFS data files within the time span over which data is to be
processed. If there is more than one file set within the requested time interval, the
remaining IDFS files will be opened and processed after the currently opened files are
processed.

The SCF software does not support real-time processing. In the real-time scenario, the
header and data files are incomplete and it is possible to attempt to read from either file
prior to the data being received. Therefore, the values for the input variables may not be
attainable when the algorithm is being executed and thus, the algorithm cannot be executed
correctly. In the playback scenario, the data is always available provided data was collected
at the time period being processed.

The parameter scf_version allows multiple file openings for the same SCF file. If the SCF
file needs to be opened just once for processing, the same SCF version number should be
passed to all SCF routines. However, for multiple file openings, the SCF version number
should be unique and all file manipulations performed by the SCF routines will use the file
descriptors defined for the SCF version number specified. In either case, the specified SCF
will only be opened once for each unique parameter set. If additional calls are made to this
routine with the same parameter set, the module simply returns the ALL_OKAY status
code. The user should call the scf_version_number routine to retrieve a unique SCF
version number instead of choosing this value themselves. The retrieval of multiple output
values from a single SCF source does not constitute the need for multiple SCF version
numbers; a single SCF version number will suffice.

ERRORS

All errors within this routine are returned through the status variable. The include file
SCF_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The SCF_codes.h file is described in
section 3H of the IDFS Programmers Manual.

scf_open (3R) scf_open (3R)

 349 December 28, 2012

SEE ALSO
load_scf 3R
scf_version_number 3R
SCF_codes 3H
libbase_SCF 3H

BUGS

None

EXAMPLES

Retrieve the contents of the SCF file TMMO_EXAMPLE and open the associated IDFS
data sets for the time range specified.

#include "libbase_SCF.h"
#include "SCF_codes.h"

SDDAS_LONG btime_sec, btime_nsec, etime_sec, etime_nsec;
SDDAS_USHORT scf_vnum;
SDDAS_SHORT status, btime_yr, btime_day, etime_yr, etime_day;

btime_yr = 1992;
btime_day = 217;
btime_sec = 32340;
btime_nsec = 0;

etime_yr = 1992;
etime_day = 217;
etime_sec = 32342;
etime_nsec = 0;

scf_version_number (&scf_vnum);
status = scf_open ("TMMO_EXAMPLE", scf_vnum, btime_yr, btime_day, btime_sec,

 btime_nsec, etime_yr, etime_day, etime_sec, etime_nsec);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by scf_open routine.\n", status);
 exit (-1);
 }

scf_open (3R) scf_open (3R)

 350 December 28, 2012

scf_output_data (3R) scf_output_data (3R)

 351 December 28, 2012

SCF_OUTPUT_DATA
function - execute the algorithm defined in the SCF file and return the values for the output
variables in the specified scf_data structure

SYNOPSIS

#include "libbase_SCF.h"
#include "SCF_codes.h"

SDDAS_SHORT scf_output_data (SDDAS_CHAR *filename,
 SDDAS_USHORT scf_version, void *scf_data_ptr)

ARGUMENTS

filename - the name of the SCF file of interest
scf_version - SCF identification number which allows for multiple

openings of the same SCF file
scf_data_ptr - pointer to the scf_data structure that is to hold

the values that are returned
scf_output_data - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for SCF_OUTPUT_DATA

STATUS CODE EXPLANATION OF STATUS

LOCATE_SCF_NOT_FOUND the requested filename, scf_version combination has no memory allocated for
processing (user did not call scf_open for this combination)

SCF_OUTPUT_CALC the data accumulation rate has not been set (user did not call scf_sample_rate for
this combination)

SCF_OUTPUT_DATA_STR the scf_data structure is not associated with the specified SCF file
SCF_INVALID_INDEX the array index value computed at execution time is invalid
SCF_BAD_LOGICAL_OPER invalid logical operator specified in the IF-ELSE-ENDIF construct
SCF_FAST_BAD_LOCATE an error was encountered when trying to access the structure that holds

information pertinent to one of the IDFS data sets being processed
SCF_PROCESS_BAD_EX an error was encountered when trying to access the structure that holds

information pertinent to one of the IDFS data sets being processed
SCF_BAD_FRAC invalid normalization factor computed
SCF_ACQ_MANY_READS the acquisition time is incorrect for the vector IDFS source selected as the control

variable
SCF_TERMINATE processing must stop due to data not being on-line
SCF_NO_FUNCTION the function being requested is not a registered function
SCF_NO_LIBRARY the shared object library which holds the user-defined function can not be opened
SCF_NO_FUNC_IN_LIB the user-defined function is not found in the specified shared object library
SCF_TDIMEN invalid value for the dimension argument specified in the tensor summation

equation
SCF_TSUM_VDIMEN invalid dimension sizes for resultant row/column vector in the tensor summation

equation
SCF_TSUM_ROW_DIMEN cannot collapse over the first dimension since the argument is a row vector in the

tensor summation equation
SCF_TSUM_COL_DIMEN cannot collapse over the second dimension since the argument is a column vector

in the tensor summation equation
SCF_TSUM_RSIZE the size of the resultant tensor is incorrect for summing over the requested

dimension in the tensor summation equation

scf_output_data (3R) scf_output_data (3R)

 352 December 28, 2012

STATUS CODE EXPLANATION OF STATUS
SCF_TWDIMEN invalid value for the dimension argument specified in the tensor weighted

summation equation
SCF_TWSUM_VDIMEN invalid dimension sizes for resultant row/column vector in the tensor weighted

summation equation
SCF_TWSUM_ROW_DIMEN cannot collapse over the first dimension since the argument is a row vector in the

tensor weighted summation equation
SCF_TWSUM_COL_DIMEN cannot collapse over the second dimension since the argument is a column vector

in the tensor weighted summation equation
SCF_TWSUM_RSIZE the size of the resultant tensor is incorrect for summing over the requested

dimension in the tensor weighted summation equation
SCF_TW_WLEN the size of the array of weight factors is incorrect for collapsing over the requested

dimension in the tensor weighted summation equation
SCF_TSPACE invalid value for the bin_spacing argument specified in the tensor integral equation
SCF_TINT_CLEN the size of the array of center values in incorrect for collapsing over the requested

dimension in the tensor integral equation
SCF_TINSERT_SDIMEN invalid dimension sizes for the start / stop index arguments in the tensor insertion

equation
SCF_TINSERT_START the start index value is greater than the stop index value in the tensor insertion

equation
SCF_TINSERT_INDEX invalid start / stop index values specified in the tensor insertion equation
SCF_TINSERT_SIZE the number of elements to be inserted does not match the size defined by the start /

stop index values in the tensor insertion equation
SCF_TEXTRACT_SDIMEN invalid dimension sizes for the start / stop index arguments in the tensor extraction

equation
SCF_TEXTRACT_START the start index value is greater than the stop index value in the tensor extraction

equation
SCF_TEXTRACT_INDEX invalid start / stop index values specified in the tensor extraction equation
SCF_TEXTRACT_RES_RANK the dimension (rank) of the resultant is inconsistent with the start / stop index

values specified in the tensor extraction equation
SCF_TEXTRACT_RES_DIMEN invalid dimension sizes for the resultant in the tensor extraction equation
SCF_BREAK_STMT a BREAK statement was specified outside of a FOR loop
SCF_FILL_SZ the size of the array that holds the data once it has been converted into the

requested units is not large enough to hold the data that is being processed
SCF_TENSOR_VECTOR_SRC Multi-dimensional IDFS data source cannot serve as a controller
CUR_TIME_NOT_FOUND an error was encountered when trying to access the structure that holds

information pertinent to one of the IDFS data sets being processed
CHK_TDATA_NOT_FOUND an error was encountered when trying to access the structure that holds

information pertinent to one of the IDFS data sets being processed
CHK_DATA_NOT_FOUND an error was encountered when trying to access the structure that holds

information pertinent to one of the IDFS data sets being processed
 Error codes returned by read_drec ()
 Error codes returned by convert_to_units ()
 Error codes returned by reset_experiment_info ()
 Error codes returned by file_pos ()
 Error codes returned by next_file_start_time ()
 Error codes returned by create_idf_data_structure ()
ALL_OKAY the routine terminated successfully

Scf_output_data utilizes the convert_to_units, read_drec, reset_experiment_info and file_pos
IDFS read routines. For a complete listing of the error codes returned by these modules, the user is
referred to section 1R of the IDFS Programmers Manual.

scf_output_data (3R) scf_output_data (3R)

 353 December 28, 2012

DESCRIPTION
Scf_output_data returns data for all the defined output variables evaluated during the
current time step of the algorithm. The SCF file of interest is referenced through the
parameter filename. The filename parameter includes the full pathname extension of the
SCF file being referenced and must be less than 512 characters in length. Due to the nature
of the processing, it is possible that the current time interval may cross a file boundary; that
is, the start time of the interval is within one file and the end time of the interval is within
the next file. If the next file is not available, the status code SCF_TERMINATE will be
returned. Subsequent calls to the scf_output_data routine will continue to return
SCF_TERMINATE until the calling module terminates. Therefore, if the user does not
look for the SCF_TERMINATE status code upon return from this module and terminate
processing appropriately, the program will end up in an infinite loop. This status code may
be returned when the user-requested end time is located between the start and stop time
period for the current iteration of the algorithm. In this case, the data for the controlling
data set will be complete, but the acquisition of other sets of data required by the SCF may
be incomplete due to data files not being available (online) to complete the acquisition. It is
up to the user whether or not to utilize the sample. This status code may also be returned in
the midst of processing if the data file became unavailable (off-line) after processing of the
data began. If this happens, it is not known whether the controlling data set or the other
data sets ran into the problem; therefore, it is best to simply throw away the data and
terminate processing. Therefore, appropriate termination must be deciphered by the user
program.

The returned data is placed in the scf_data structure that is referenced by the argument
scf_data_ptr. The argument scf_data_ptr is a pointer to the structure that is to hold all
data pertinent to the SCF file being processed. The structure is created and the address to
this structure is returned when a call to the create_scf_data_structure routine is made.
The contents of this structure is described in section 3S of the IDFS Programmers Manual.
Since the SCF file dictates the number of output variables and the dimensionality of these
variables, the user should call the create_scf_data_structure routine once for each distinct
SCF file being processed and this pointer should be passed in conjunction with the named
SCF file when the output variable values are being retrieved. If the scf_output_data
routine determines that the scf_data structure being referenced is not associated with the
named SCF file, an error code is returned.

The parameter scf_version allows multiple file openings for the same SCF file. If the SCF
file needs to be opened just once for processing, the same SCF version number should be
passed to all SCF routines. However, for multiple file openings, the SCF version number
should be unique and all file manipulations performed by the SCF routines will use the file
descriptors defined for the SCF version number specified. The user should call the
scf_version_number routine to retrieve a unique SCF version number instead of choosing
this value themselves. The retrieval of multiple output values from a single SCF source
does not constitute the need for multiple SCF version numbers; a single SCF version
number will suffice.

scf_output_data (3R) scf_output_data (3R)

 354 December 28, 2012

The number of output variables returned is always indicated in the scf_data structure in the
num_output element. The data that is returned is referenced by the output_data element
of the scf_data structure. This element is a pointer to the memory that holds all values for
all output variables. In order to get to the data for a specific output variable, the user must
retrieve an index into this memory block. These indexes are returned in the output_index
element of the scf_data structure, which is an array of values, with one value being returned
per output variable. Indexing into this array starts at position zero. Once this index value
has been retrieved, the user can then reference the data for a particular output variable.

The output variables returned may be of different dimensionalities; that is, the data being
returned may be a combination of scalar, vector or tensor quantities since the SCF software
supports multi-dimensional output quantities (up to 10-D), e.g.
OUTPUT1[n][n][n][n][n][n][n][n][n][n]. The number of values returned for each output
variable is indicated in the output_length element of the scf_data structure. The
output_length element is an array of values, with one value being returned per output
variable. Indexing into this array starts at position zero. The user is referred to the
EXAMPLE section for a coding example which exemplifies data retrieval for each output
variable that is returned by this module.

The amount of time that is processed for each iteration of the algorithm is specified in the
call to the scf_sample_rate routine. The user must call the scf_sample_rate routine once
per program before the scf_output_data routine is called; otherwise, an error code is
returned by this module. If the user specifies that the SCF software is to determine the
accumulation rate and if the sample rate for one of the input variables changes while the
algorithm is being executed, the software will continue to acquire data for the current
accumulation period. If the sample rate changed such that the source is returning data at a
rate faster than the current accumulation period, the accumulation period will be re-set at
the next iteration of the algorithm.

ERRORS

All errors within this routine are returned through the status variable. The include file
SCF_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The SCF_codes.h file is described in
section 3H of the IDFS Programmers Manual.

SEE ALSO

scf_open 3R
scf_sample_rate 3R
create_scf_data_structure 3R
scf_version_number 3R
SCF_codes 3H
libbase_SCF 3H
scf_data 3S

BUGS
None

scf_output_data (3R) scf_output_data (3R)

 355 December 28, 2012

EXAMPLES
Execute the algorithm defined in the SCF file TMMO_EXAMPLE one time. The data is
returned in the scf_data structure referenced by the pointer scf_data_ptr. Print out the
values for the output variables returned. The code assumes that the scf_sample_rate
module has been called.

#include "libbase_SCF.h"
#include "SCF_codes.h"

struct scf_data *SCF_DATA;
register SDDAS_LONG i;
SDDAS_FLOAT *dptr, *stop_loop;
SDDAS_USHORT scf_vnum;
SDDAS_SHORT status;
void *scf_data_ptr;

scf_version_number (&scf_vnum);
status = create_scf_data_structure (&scf_data_ptr);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by create_scf_data_structure routine.\n", status);
 exit (-1);
 }
SCF_DATA = (struct scf_data *) scf_data_ptr;

status = scf_output_data ("TMMO_EXAMPLE", scf_vnum, scf_data_ptr);
if (status != ALL_OKAY)

 {
 printf ("\n Error %d returned by scf_output_data routine.\n", status);
 exit (-1);
 }

/* Print the output variables returned. */

for (i = 0; i < SCF_DATA->num_output; ++i)

 {
 dptr = SCF_DATA->output_data + *(SCF_DATA->output_index + i);
 stop_loop = dptr + *(SCF_DATA->output_length + i);
 for (; dptr < stop_loop; ++dptr)
 printf ("\nOutput Variable %ld = %e", i, *dptr);
 }

scf_output_data (3R) scf_output_data (3R)

 356 December 28, 2012

scf_position (3R) scf_position (3R)

 357 December 28, 2012

SCF_POSITION
function - positions the IDFS file pointers at the requested time in the files for all defined
SCF input variables

SYNOPSIS

#include "libbase_SCF.h"
#include "SCF_codes.h"

SDDAS_SHORT scf_position (SDDAS_CHAR *filename, SDDAS_USHORT scf_version,
 SDDAS_SHORT btime_yr, SDDAS_SHORT btime_day,
 SDDAS_LONG btime_sec, SDDAS_LONG btime_nano,
 SDDAS_SHORT etime_yr, SDDAS_SHORT etime_day,
 SDDAS_LONG etime_sec, SDDAS_LONG etime_nano)

ARGUMENTS

filename - the name of the SCF file of interest
scf_version - SCF identification number which allows for multiple

openings of the same SCF file
btime_yr - the year at which algorithm execution is to commence
btime_day - the day of year at which algorithm execution is to commence
btime_sec - the time of day in seconds at which algorithm execution is to

commence
btime_nano - the time of day residual in nanoseconds
etime_yr - the year at which algorithm execution is to terminate
etime_day - the day of year at which algorithm execution is to terminate
etime_sec - the time of day in seconds at which algorithm execution is to

terminate
etime_nano - the time of day residual in nanoseconds
scf_position - routine status (see TABLE 1)

TABLE 1. Status Code Returned for SCF_POSITION

STATUS CODE EXPLANATION OF STATUS

LOCATE_SCF_NOT_FOUND the requested filename, scf_version combination has no memory allocated for
processing (user did not call scf_open for this combination)

SCF_POS_ERROR error returned from call to file_pos for specified input variables
CHK_TDATA_NOT_FOUND an error was encountered when trying to access the structure that holds information

pertinent to one of the IDFS data sets being processed
CHK_DATA_NOT_FOUND an error was encountered when trying to access the structure that holds information

pertinent to one of the IDFS data sets being processed
WRONG_DATA_STRUCTURE incompatibility between IDFS data set and IDFS data structure used to hold the

data being returned
 Error codes returned by file_pos ()
ALL_OKAY the routine terminate successfully

scf_position (3R) scf_position (3R)

 358 December 28, 2012

Scf_position utilizes the IDFS read routine file_pos. For a complete listing of the error codes
returned by this module, the user is referred to section 1R of the IDFS Programmers Manual.

DESCRIPTION

Scf_position positions all of the IDFS data sets at the requested start time. The SCF file of
interest is referenced through the parameter filename. The filename parameter includes the
full pathname extension of the SCF file being referenced and must be less than 512
characters in length. This routine uses the currently opened IDFS files that are associated
with the defined input variables and sets the current data pointers to the data sample or
sweep whose beginning time is closest to the requested start time. If all of the IDFS data
sets cannot be positioned, an error code is returned. Before the first call to the scf_position
routine can be made, a call to the routine scf_open with the identical filename and
scf_version parameters must have been made to obtain a set of file descriptors for the
appropriate vidf, header and data files.

The parameter scf_version allows multiple file openings for the same SCF file. If the SCF
file needs to be opened just once for processing, the same SCF version number should be
passed to all SCF routines. However, for multiple file openings, the SCF version number
should be unique and all file manipulations performed by the SCF routines will use the file
descriptors defined for the SCF version number specified. The user should call the
scf_version_number routine to retrieve a unique SCF version number instead of choosing
this value themselves. The retrieval of multiple output values from a single SCF source
does not constitute the need for multiple SCF version numbers; a single SCF version
number will suffice.

ERRORS

All errors within this routine are returned through the status variable. The include file
SCF_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The SCF_codes.h file is described in
section 3H of the IDFS Programmers Manual.

SEE ALSO

scf_open 3R
scf_version_number 3R
libbase_SCF 3H
SCF_codes 3H

BUGS

None

EXAMPLES

Position the IDFS data files associated with the input variables defined in the SCF file
TMMO_EXAMPLE at the start of the time range specified.

#include "libbase_SCF.h"
#include "SCF_codes.h"

scf_position (3R) scf_position (3R)

 359 December 28, 2012

SDDAS_LONG btime_sec, btime_nsec, etime_sec, etime_nsec;
SDDAS_USHORT scf_vnum;
SDDAS_SHORT status, btime_yr, btime_day, etime_yr, etime_day;

btime_yr = 1992;
btime_day = 217;
btime_sec = 32340;
btime_nsec = 0;

etime_yr = 1992;
etime_day = 217;
etime_sec = 32342;
etime_nsec = 0;

scf_version_number (&scf_vnum);
status = scf_open ("TMMO_EXAMPLE", scf_vnum, btime_yr, btime_day, btime_sec,

 btime_nsec, etime_yr, etime_day, etime_sec, etime_nsec);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by scf_open routine.\n", status);
 exit (-1);
 }

status = scf_position ("TMMO_EXAMPLE", scf_vnum, btime_yr, btime_day,
 btime_sec, btime_nsec, etime_yr, etime_day, etime_sec,

 etime_nsec);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by scf_position routine.\n", status);
 exit (-1);
 }

scf_position (3R) scf_position (3R)

 360 December 28, 2012

scf_sample_rate (3R) scf_sample_rate (3R)

 361 December 28, 2012

SCF_SAMPLE_RATE
function - determines the amount of time to be processed for each iteration of the algorithm

SYNOPSIS

#include "libbase_SCF.h"
#include "SCF_defs.h"
#include "SCF_codes.h"

SDDAS_SHORT scf_sample_rate (SDDAS_CHAR *filename,
 SDDAS_USHORT scf_version, SDDAS_CHAR accum_method,
 SDDAS_DOUBLE time_value, SDDAS_CHAR rate_calc)

ARGUMENTS

filename - the name of the SCF file of interest
scf_version - SCF identification number which allows for multiple

openings of the same SCF file
accum_method - the scheme used to determine the amount of time to be

processed for each iteration of the algorithm
1 - use the accumulation rate of the fastest

input variable, as determined by the
SCF software (SCF_DELTA_T)

2 - use the accumulation rate of the input
variable specified in the time_value
parameter (USE_INPUT_VAR)

3 - use the accumulation rate specified in
the time_value parameter
(USE_DELTA_T)

time_value - the input variable number to use for the USE_INPUT_VAR
accum_method or the time period to use as accumulation rate
for the USE_DELTA_T accum_method

rate_calc - the method to use to calculate the accumulation rate for the
IDFS data sets utilized by the input variables

1 - use data accumulation values
(SCF_MEASURE_TM)

2 - use data accumulation plus data latency
values (SCF_MEASURE_LAT_TM)

scf_sample_rate - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for SCF_SAMPLE_RATE

STATUS CODE EXPLANATION OF STATUS
LOCATE_SCF_NOT_FOUND the requested filename, scf_version combination has no memory allocated for

processing (user did not call scf_open for this combination)
SCF_SAMP_VECTOR_ACCUM the accumulation scheme selected in the accum_method parameter is not a valid

selection for non-scalar inputs variables
SCF_SAMP_POS the IDFS data sets have not been positioned at the designated start time (user did

not call scf_position for this combination)

scf_sample_rate (3R) scf_sample_rate (3R)

 362 December 28, 2012

STATUS CODE EXPLANATION OF STATUS
SCF_SAMP_SWP_MALLOC no memory to hold the time period for each element of the sweep
SCF_SAMP_BAD_ACCUM invalid value for the accum_method parameter
SCF_SAMP_BAD_LOCATE an error was encountered when trying to access information pertinent to one of

the IDFS data sets being processed
SCF_SAMP_BAD_RATE invalid value for the rate_calc parameter
SCF_SAMP_BAD_INPUT_NUM invalid value for the time_value parameter; bad input variable number
SCF_SAMP_VECTOR_SRC a non-scalar input variable must be selected when the input variables are a

combination of scalar and non-scalar (vector) data
SCF_FAST_BAD_LOCATE an error was encountered when trying to access the structure that holds

information pertinent to one of the IDFS data sets being processed
CUR_TIME_NOT_FOUND an error was encountered when trying to access the structure that holds

information pertinent to one of the IDFS data sets being processed
 Error codes returned by create_idf_data_structure ()
ALL_OKAY the routine terminated successfully

DESCRIPTION

Scf_sample_rate determines the amount of time to be processed for each iteration of the
algorithm defined by the SCF. The SCF file of interest is referenced through the parameter
filename. The filename parameter includes the full pathname extension of the SCF file
being referenced and must be less than 512 characters in length. The user must call the
scf_position routine before the scf_sample_rate module can be called. If the
scf_sample_rate routine determines that the scf_position routine has not been called, an
error code is returned to the user. In addition, this module must be called once per program
prior to calling the scf_output_data routine; otherwise, the scf_output_data routine will
return an error code.

The parameter scf_version allows multiple file openings for the same SCF file. If the SCF
file needs to be opened just once for processing, the same SCF version number should be
passed to all SCF routines. However, for multiple file openings, the SCF version number
should be unique and all file manipulations performed by the SCF routines will use the file
descriptors defined for the SCF version number specified. The user should call the
scf_version_number routine to retrieve a unique SCF version number instead of choosing
this value themselves. The retrieval of multiple output values from a single SCF source
does not constitute the need for multiple SCF version numbers; a single SCF version
number will suffice.

The amount of time to be processed for each iteration of the algorithm can be computed in
one of three ways. The first method lets the user specify the amount of time to be
processed. For this method, the parameter accum_method must be set to the value
USE_DELTA_T and the parameter time_value must be set to the number of seconds to
use as the accumulation period. Since this parameter is a double precision floating point
value, fractions of a second can be specified. Since the amount of time is specified and not
computed, the parameter rate_calc is not utilized, but it must still be specified. The user
cannot select this method if any of the defined input variables are vector IDFS sources; an
error code will be returned to the user if this condition is true.

scf_sample_rate (3R) scf_sample_rate (3R)

 363 December 28, 2012

The second method uses the data accumulation rate for a specific input variable as the
amount of time to be processed for each iteration of the algorithm. For this method, the
parameter accum_method must be set to the value USE_INPUT_VAR and the parameter
time_value must be set to the input variable number. A check is made to ensure that the
input variable number specified is a valid value. If the data associated with the defined
input variables is a mixture of scalar and vector (1-D) data, the user must select a 1-D vector
input variable to calculate the accumulation period. If the user specified a scalar input
variable, an error code is returned to the user.

The third method should be selected when the SCF software is to determine the amount of
time to be processed for each iteration of the algorithm. For this method, the parameter
accum_method must be set to the value SCF_DELTA_T. The parameter time_value is
not utilized but it must still be specified; a value of 0.0 is suggested. For this method, the
software loops over all defined input variables to find the IDFS data set that has the fastest
sample rate and that data set controls the rate of data accumulation for each iteration of the
algorithm. If the data associated with the defined input variables is a mixture of scalar and
vector (1-D) data, the SCF software will only use the vector data to determine the fastest
sample rate.

For the second and third method, the rate_calc parameter defines the scheme that is to be
used to calculate the sample rate for the IDFS data sets utilized by the input variables. For a
scalar IDFS data set, if the parameter is set to SCF_MEASURE_TM, the sample rate will
be determined by comparing the data_accum value found in the header record for the IDFS
data sets. If the parameter is set to SCF_MEASURE_LAT_TM, the sample rate will be
determined by combining the data_accum and data_lat values found in the header record
for the IDFS data sets. The data_accum value is defined as the time over which the
acquisition of a single datum occurs and the data_lat value is defined as the dead time
between successive data acquisitions. The data_accum and the data_lat values together
give the total time between successive accumulations.

For a vector IDFS data set, the interpretation of the rate_calc parameter is somewhat
different. If the parameter is set to SCF_MEASURE_TM, the sample rate will be
determined by comparing the time it takes to acquire the data for the sweep, which is
defined as (data_accum + data_lat) times the number of samples in the sweep. If the
parameter is set to SCF_MEASURE_LAT_TM, the sample rate will be determined by
combining the time it takes to acquire the data for the sweep and the swp_reset value found
in the header record for the IDFS data sets. The swp_reset value is defined as the dead
time between successive columns of data, which is equivalent to any data latency which
exists in going from the last step in one vector back to the initial step in the next vector.

ERRORS

All errors within this routine are returned through the status variable. The include file
SCF_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The SCF_codes.h file is described in
section 3H of the IDFS Programmers Manual.

scf_sample_rate (3R) scf_sample_rate (3R)

 364 December 28, 2012

SEE ALSO
scf_version_number 3R
scf_output_data 3R
scf_position 3R
SCF_codes 3H
SCF_defs 3H
libbase_SCF 3H

BUGS

None

EXAMPLES

Determine the fastest sample rate of all input variables defined in the SCF file
TMMO_EXAMPLE. The following code segment assumes that scf_version_number and
scf_position modules have been called.

#include "libbase_SCF.h"
#include "SCF_defs.h"
#include "SCF_codes.h"

SDDAS_USHORT scf_vnum;
SDDAS_DOUBLE time_value;
SDDAS_SHORT status;

time_value = 0.0;
status = scf_sample_rate ("TMMO_EXAMPLE", scf_vnum, SCF_DELTA_T,

 time_value, SCF_MEASURE_LAT_TM);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by scf_sample_rate routine.\n", status);
 exit (-1);
 }

scf_terminate_sources (3R) scf_terminate_sources (3R)

 365 December 28, 2012

SCF_TERMINATE_SOURCES
function – returns the IDFS data key(s) for the input variable(s) that are no longer available
for processing and caused the return of the status code SCF_TERMINATE from the
scf_output_data routine

SYNOPSIS

#include "libbase_SCF.h"
#include "SCF_codes.h"

SDDAS_SHORT scf_terminate_sources (SDDAS_CHAR *filename,
 SDDAS_USHORT scf_version,

 SDDAS_LONG *num_sources,
 SDDAS_ULONG **idfs_keys)

ARGUMENTS

filename - the name of the SCF file of interest
scf_version - SCF identification number which allows for multiple

openings of the same SCF file
num_sources - the number of elements defined for the idfs_keys

array
 idfs_keys - pointer to the array of data keys for the IDFS data

sources that are no longer available for processing
(duplicates are removed)

scf_terminate_sources - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for SCF_TERMINATE_SOURCES

STATUS CODE EXPLANATION OF STATUS
LOCATE_SCF_NOT_FOUND the requested filename, scf_version combination has no memory allocated for

processing (user did not call scf_open for this combination)
ALL_OKAY the routine terminated successfully

DESCRIPTION

Scf_terminate_sources identifies the IDFS data source(s) that triggered the return value of
SCF_TERMINATE from the scf_output_data routine. This return code indicates that
some of the IDFS data sources are no longer available for processing for the time interval
being executed. In other words, all of the data for the time step being processed by the SCF
algorithm is not available online. The SCF file of interest is referenced through the
parameter filename. The filename parameter includes the full pathname extension of the
SCF file being referenced and must be less than 512 characters in length.

The parameter scf_version allows multiple file openings for the same SCF file. If the SCF
file needs to be opened just once for processing, the same SCF version number should be
passed to all SCF routines. However, for multiple file openings, the SCF version number
should be unique and all file manipulations performed by the SCF routines will use the file
descriptors defined for the SCF version number specified. The user should call the

scf_terminate_sources (3R) scf_terminate_sources (3R)

 366 December 28, 2012

scf_version_number routine to retrieve a unique SCF version number instead of choosing
this value themselves. The retrieval of multiple output values from a single SCF source
does not constitute the need for multiple SCF version numbers; a single SCF version
number will suffice.

The data key(s) for the IDFS data source(s) that are no longer available for processing are
returned in the idfs_keys array and the number of elements contained in the idfs_keys array
is returned in num_sources. The memory for the idfs_keys array is allocated by this
module and should be freed by the calling module once the information has been processed.
The pointer value for the idfs_keys argument should be checked for a NULL value, which
indicates that the memory allocation attempt failed.

ERRORS

All errors within this routine are returned through the status variable. The include file
SCF_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The SCF_codes.h file is described in
section 3H of the IDFS Programmers Manual.

SEE ALSO

scf_version_number 3R
scf_output_data 3R
scf_open 3R
SCF_codes 3H
libbase_SCF 3H

BUGS

None

EXAMPLES

Execute the algorithm defined in the SCF file TMMO_EXAMPLE one time by calling the
module scf_output_data. If the status code SCF_TERMINATE is returned, print out the
data key(s) for the IDFS data source(s) that are no longer available for processing.

#include "libbase_SCF.h"
#include "SCF_codes.h"

 register SDDAS_LONG i;
 SDDAS_LONG num_sources;
 SDDAS_ULONG *data_keys;
 SDDAS_USHORT scf_vnum;
 SDDAS_SHORT status;
 void *scf_data_ptr;

 scf_version_number (&scf_vnum);

scf_terminate_sources (3R) scf_terminate_sources (3R)

 367 December 28, 2012

 status = create_scf_data_structure (&scf_data_ptr);
 if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by create_scf_data_structure routine.\n", status);
 exit (-1);
 }

 status = scf_output_data ("TMMO_EXAMPLE", scf_vnum, scf_data_ptr);
 if (status != ALL_OKAY && status != SCF_TERMINATE)
 {
 printf ("\n Error %d returned by scf_output_data routine.\n", status);
 exit (-1);
 }

 if (status == SCF_TERMINATE)
 {
 status = scf_terminate_sources ("TMMO_EXAMPLE", scf_vnum, &num_sources,
 &data_keys);
 if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by scf_terminate_sources routine.\n", status);
 exit (-1);
 }

 if (*data_keys != NULL)
 for (i = 0; i < num_sources; ++i)
 printf ("\nData Key[%ld] = %ld", i, data_keys[i]);

 free (data_keys);
 }

scf_terminate_sources (3R) scf_terminate_sources (3R)

 368 December 28, 2012

scf_version_number (3R) scf_version_number (3R)

 369 December 28, 2012

SCF_VERSION_NUMBER
function - returns a unique SCF identification number

SYNOPSIS

#include "libbase_SCF.h"

void scf_version_number (SDDAS_USHORT *scf_version)

ARGUMENTS

scf_version - SCF identification number which allows for multiple openings of the
same SCF file for concurrent algorithm execution

DESCRIPTION

Scf_version_number returns a unique SCF identification number that is to be used as a
parameter to the other SCF routines. This parameter allows multiple file openings for an
SCF file. In most cases, the user may open many different SCF files, opening each SCF file
once. In this case, the user may pass the same SCF version number for each of the different
SCF files; that is, one SCF version number is sufficient. The user should call the
scf_version_number module to be guaranteed a unique SCF version number. For multiple
file openings of the same SCF file, the SCF version number must be unique and all file
manipulations performed by the SCF routines will use the file descriptors defined for the
SCF version number specified.

ERRORS

This routine returns no status or error codes.

BUGS

None

EXAMPLES

Retrieve a unique SCF version number to be used by the SCF routines.

#include "libbase_SCF.h"

SDDAS_USHORT vnum;

scf_version_number (&vnum);

scf_version_number (3R) scf_version_number (3R)

 370 December 28, 2012

scf_algorithm_start (4R) scf_algorithm_start (4R)

 371 December 28, 2012

SCF_ALGORITHM_START
function - returns the start time and the accumulation period (delta-t) for the first iteration of
the SCF algorithm

SYNOPSIS

#include "libavg_SCF.h"
#include "SCF_codes.h"

SDDAS_SHORT scf_algorithm_start (SDDAS_CHAR *filename,
 SDDAS_USHORT scf_version, SDDAS_SHORT *start_year,
 SDDAS_SHORT *start_day, SDDAS_LONG *start_sec,
 SDDAS_LONG *start_nano, SDDAS_LONG *res_sec,
 SDDAS_LONG *res_nano)

ARGUMENTS

filename - the name of the SCF file of interest
scf_version - SCF identification number which allows for multiple

openings of the same SCF file
start_year - the year time component for the first iteration of the

SCF algorithm
start_day - the day of year time component for the first iteration

of the SCF algorithm
start_sec - the time of day in seconds for the first iteration of the

SCF algorithm
start_nano - the time of day residual in nanoseconds for the first

iteration of the SCF algorithm
res_sec - the accumulation period (delta-t) in seconds
res_nano - the accumulation period residual in nanoseconds
scf_algorithm_start - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for SCF_ALGORITHM_START

STATUS CODE EXPLANATION OF STATUS

LOCATE_SCF_NOT_FOUND the requested filename, scf_version combination has no memory allocated for
processing (user did not call scf_open for this combination)

SCF_ALG_START_NO_SAMPLE the data accumulation rate has not been set (user did not call scf_sample_rate for
this combination)

ALL_OKAY the routine terminated successfully

DESCRIPTION

Scf_algorithm_start returns the start time and the amount of time processed for the first
iteration of the algorithm defined by the SCF. The SCF file of interest is referenced through
the parameter filename. The filename parameter includes the full pathname extension of
the SCF file being referenced and must be less than 512 characters in length. The user must
call the scf_sample_rate routine before the scf_algorithm_start module can be called. If

scf_algorithm_start (4R) scf_algorithm_start (4R)

 372 December 28, 2012

the scf_algorithm_start routine determines that the scf_sample_rate routine has not been
called, an error code is returned.

The parameter scf_version allows multiple file openings for the same SCF file. If the SCF
file needs to be opened just once for processing, the same SCF version number should be
passed to all SCF routines. However, for multiple file openings, the SCF version number
should be unique and all file manipulations performed by the SCF routines will use the file
descriptors defined for the SCF version number specified. The user should call the
scf_version_number routine to retrieve a unique SCF version number instead of choosing
this value themselves. The retrieval of multiple output values from a single SCF source
does not constitute the need for multiple SCF version numbers; a single SCF version
number will suffice.

ERRORS

All errors within this routine are returned through the status variable. The include file
SCF_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The SCF_codes.h file is described in
section 3H of the IDFS Programmers Manual.

SEE ALSO

scf_open 3R
scf_version_number 3R
scf_sample_rate 3R
SCF_codes 3H
libavg_SCF 4H

BUGS

None

EXAMPLES

Determine the start time and the time accumulation period associated with the first iteration
of the SCF file TMMO_EXAMPLE. The following code segment assumes that
scf_version_number and scf_sample_rate modules have been called.

#include "libavg_SCF.h"
#include "SCF_codes.h"

SDDAS_USHORT scf_vnum;
SDDAS_SHORT status, base_yr, base_day;
SDDAS_LONG base_sec, base_nano, res_sec, res_nano;

status = scf_algorithm_start ("TMMO_EXAMPLE", scf_vnum, &base_yr,

&base_day, &base_sec, &base_nano, &res_sec,
&res_nano);

scf_algorithm_start (4R) scf_algorithm_start (4R)

 373 December 28, 2012

if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by scf_algorithm_start routine.\n", status);
 exit (-1);
 }

scf_algorithm_start (4R) scf_algorithm_start (4R)

 374 December 28, 2012

scf_bin_info (4R) scf_bin_info (4R)

 375 December 28, 2012

SCF_BIN_INFO
function - specifies how SCF data is to be binned for time or sample averaging

SYNOPSIS

#include "libavg_SCF.h"
#include "SCF_codes.h"
#include "user_defs.h"

SDDAS_SHORT scf_bin_info (SDDAS_CHAR *filename,
 SDDAS_USHORT scf_version, SDDAS_LONG output_var,
 SDDAS_CHAR swp_type, SDDAS_FLOAT start,
 SDDAS_FLOAT stop, SDDAS_LONG num_bins,
 SDDAS_CHAR swp_fmt, SDDAS_LONG center_var,
 SDDAS_LONG band_var, SDDAS_LONG upper_band_var,

 SDDAS_CHAR var_fmt, SDDAS_CHAR input_fmt)

ARGUMENTS

filename - the name of the SCF file of interest
scf_version - SCF identification number which allows for multiple

openings of the same SCF file
output_var - output variable identification number (numbering starts at

zero)
swp_type - the format used to determine the number of data bins and data

storage
1 - the number of bins used is equal to the

number of values returned for the
specified output variable
(FIXED_SWEEP)

2 - user specifies the number of bins
(VARIABLE_SWEEP)

start - the center value associated with the first bin for variable
sweep processing

stop - the center value associated with the last bin for variable sweep
processing

num_bins - the number of bins to create for variable sweep processing
swp_fmt - the spacing for the bins

1 - use linear spacing (LIN_SPACING)
2 - use logarithmic spacing

(LOG_SPACING)
3 - use variable width spacing

(VARIABLE_SPACING)
center_var - the output variable which holds the center values to be used

for the bins (the dependent variable); a value of -1 means no
output variable specified since numbering starts at zero

scf_bin_info (4R) scf_bin_info (4R)

 376 December 28, 2012

band_var - the output variable which holds the widths of the bins (used to
create the band width values); a value of -1 means no output
variable specified since numbering starts at zero

upper_band_var - the output variable which holds the upper edges of the scan
bins when var_fmt is set to ‘A’ or ‘a’; a value of -1 means no
output variable specified since numbering starts at zero

var_fmt - the format flag for variable width spacing
L or l - the center bin values are used as the

lower edge of the band width values
C or c - the center bin values are used as the

midpoints of the band width values
U or u - the center bin values are used as the

upper edge of the band width values
 E or e - the center bin values are used as the

lower edge of the band width values
and the scan widths specified are the
actual upper edge of the band width
values, not delta values

 A or a - the actual center, lower edge band
width and upper edge band width
values are provided (no computations
off the center values are necessary)

input_fmt - the storage scheme for the binning of the SCF data for
variable sweep processing

1 - data is placed in the bin which
encompasses the value for the
dependent variable associated with the
data (POINT_STORAGE)

2 - data is placed in all bins which fully or
partially contain the range for the
dependent variable associated with the
data (BAND_STORAGE)

scf_bin_info - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for SCF_BIN_INFO

STATUS CODE EXPLANATION OF STATUS
LOCATE_SCF_NOT_FOUND the requested filename, scf_version combination has no memory allocated for

processing (user did not call scf_open for this combination)
SCF_BIN_BAD_SWP_FMT invalid value specified for the swp_fmt argument
SCF_BIN_BAD_FMT VARIABLE_SPACING can only be requested in conjunction with

FIXED_SWEEP processing
SCF_BIN_BAD_OVAR_NUM invalid value specified for the output_var argument
SCF_BIN_MALLOC no memory for data binning information
SCF_BIN_BAD_CNUM invalid value specified for the center_var argument
SCF_BIN_BAD_BNUM invalid value specified for the band_var argument
SCF_BIN_BAD_VFMT bad format character specified in var_fmt argument

scf_bin_info (4R) scf_bin_info (4R)

 377 December 28, 2012

STATUS CODE EXPLANATION OF STATUS
SCF_BIN_CLENGTH the length of the center_var output variable does not equal the number of bins

defined
SCF_BIN_BLENGTH the length of the band_var output variable does not equal the number of bins

defined
ALL_OKAY routine terminated successfully

DESCRIPTION

Scf_bin_info defines the size and the spacing of the data buffers that will be filled by the
scf_time_average or scf_sample_average routine. The SCF file of interest is referenced
through the parameter filename. The filename parameter includes the full pathname
extension of the SCF file being referenced and must be less than 512 characters in length.
Scf_bin_info must be called once for each output variable that is to be returned by the
scf_time_average or scf_sample_average routine. This is necessary since the output
variables returned by an SCF do not have to be homogeneous; that is, the data can be a
mixture of scalar and multi-dimensional data. The first call to the scf_bin_info module for
the output variable specified will be used to generate the binning information. All
subsequent calls with the identical filename, scf_version and output_var parameters will
be ignored. This module must be called prior to calling the scf_time_average /
scf_sample_average routine.

The parameter scf_version allows multiple file openings for the same SCF file. If the SCF
file needs to be opened just once for processing, the same SCF version number should be
passed to all SCF routines. However, for multiple file openings, the SCF version number
should be unique and all file manipulations performed by the SCF routines will use the file
descriptors defined for the SCF version number specified. The user should call the
scf_version_number routine to retrieve a unique SCF version number instead of choosing
this value themselves. The retrieval of multiple output values from a single SCF source
does not constitute the need for multiple SCF version numbers; a single SCF version
number will suffice.

There are two formats that can be used to bin the data, FIXED_SWEEP and
VARIABLE_SWEEP. With a FIXED_SWEEP format, the bins are set up according to the
definition of the output variable (output_var) in the named SCF file. The number of bins
used is equal to the number of values returned for the output variable; therefore, the value
for the num_bins parameter is ignored. The data is always stored into the bins element by
element, starting with element zero and terminating with the last element returned. When
specifying a FIXED_SWEEP format, the values for the parameters start, stop and
input_fmt are ignored. If the output variable specified is a scalar quantity or a variable
with a dimension greater than or equal to 2-D, the scf_bin_info module will default to the
FIXED_SWEEP format with linear spaced bins with no output variable specified for the
center_var parameter, regardless of the setting of the parameters. The variable width
spacing option (VARIABLE_SPACING) for the swp_fmt parameter is applicable only for
the FIXED_SWEEP format. If the user tries to specify this option for the
VARIABLE_SWEEP format, an error code is returned.

scf_bin_info (4R) scf_bin_info (4R)

 378 December 28, 2012

If the user selects a VARIABLE_SWEEP format, the user must specify the number of bins
to create (num_bins), the center value associated with the first bin (start), the center value
associated with the last bin (stop), the spacing of the bins (swp_fmt) and the scheme to use
for storing the data (input_fmt). The data from an IDFS 1-D vector data set are taken as a
function of a variable M. If the 1-D vector data is being returned as an output variable, the
dependent variable M must also be returned. This output variable must be specified in the
center_var parameter. If M is allowed to vary over the individual measurement period or if
M actually represents a band width, then each element in the vector can be considered to
have been accumulated with the interval M - δ1 to M + δ2. Vector data is binned by M. If
the user selects the POINT STORAGE scheme, the data is stored by the center variable M.
If the center variable M is located between the upper and lower edge values of a given bin,
the data value is placed only in this bin. If the user selects the BAND STORAGE scheme,
the data is placed in all bins which are fully or partially contained within the range M - δ1 to
M + δ2. The data is multiplied by the percentage of the bin covered by the range before the
data is placed into the bin.

The center and band width values for the bins are calculated once. The calculations are
made after the first iteration of the SCF algorithm since data for output variables specified
in the center_var, band_var, and upper_band_var parameters may be utilized. The
algorithm used to create the center values is based in part upon the format selected
(swp_type). If the VARIABLE_SWEEP format is selected, the center values are calculated
using the start, stop and num_bins values. The difference between the start and stop
value is computed and then divided by the number of bins requested. This value is added to
the start value to calculate the next center value, with this process continuing until all
centers have been calculated. The parameter swp_fmt specifies whether the centers are to
be linearly or logarithmically spaced. The values for the center_var, band_var, and
upper_band_var parameters are ignored.

If the FIXED_SWEEP format is selected, the center values will be computed in one of three
ways. If variable width spacing (VARIABLE_SPACING) was selected for the swp_fmt
parameter, the data returned by the output variable specified in the center_var parameter
are used as the center values for the bins. If the swp_fmt parameter is set to
LIN_SPACING or LOG_SPACING and if the center_var parameter specifies an output
variable, the first and last data value for the output variable are used as the start and stop
values and the computation is the same as described above for VARIABLE_SWEEP. If no
output variable is specified for the center_var parameter (value set to -1), the center values
are created, with values from zero to the number of bins requested minus one.

The algorithm used to compute the band width values for the bins is dependent upon the
swp_fmt parameter. Linear spacing defines a scheme where the lower (upper) edge of the
band is determined by subtracting (adding) one-half of the difference between two
successive center values from (to) the center value. The same algorithm is used for log
spacing, with the log of the center values being utilized. Variable width spacing defines a
scheme where the data returned by the output variable specified in the band_var parameter
are used as correction values that are to be applied to the center values in order to calculate
the band width values. The variable var_fmt specifies how the correction values are to be

scf_bin_info (4R) scf_bin_info (4R)

 379 December 28, 2012

applied. If the var_fmt value is 'L' or 'l', the lower edge of the band is set to the center
value and the upper edge of the band is calculated by adding the correction value to the
center value. If the var_fmt value is 'C' or 'c', the lower edge of the band is calculated by
subtracting one-half of the correction value from the center value and the upper edge of the
band is calculated by adding one-half of the correction value to the center value. If the
var_fmt value is 'U' or 'u', the lower edge of the band is calculated by subtracting the
correction value from the center value and the upper edge of the band is set to the center
value. If the var_fmt value is 'E' or 'e', the lower edge of the band is set to the center value
and the upper edge of the band is set to the correction value; therefore, the correction value
is not really a delta value, it is the actual value to be used as the upper edge of the band. If
this format is selected, please take note that the center values and the lower edge values will
be identical. If the var_fmt value is 'A' or 'a', there is no need to perform a computation
using the center values in order to derive the lower and upper edges of the band. The
“actual” values for the centers, lower edges and upper edges of the scan band are returned
by the output variables specified in the parameters center_var, band_var, and
upper_band_var, respectively. The user is referred to the scf_output_center_and_band
write-up for more information concerning center and band width values.

ERRORS

All errors within this routine are returned through the status variable. The include file
SCF_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The SCF_codes.h file is described in
section 3H of the IDFS Programmers Manual.

SEE ALSO

scf_open 3R
scf_version_number 3R
scf_time_average 4R
scf_sample_average 4R
scf_output_center_and_band 4R
user_defs 1H
SCF_codes 3H
libavg_SCF 4H

BUGS

None

EXAMPLES

Create the data bins using a FIXED_SWEEP, linear spaced binning scheme for output
variable zero defined in the SCF file TMMO_EXAMPLE. The following code segment
assumes that the scf_version_number module has been called to set the scf_vnum
parameter.

#include "SCF_codes.h"
#include "user_defs.h"
#include "libavg_SCF.h"

scf_bin_info (4R) scf_bin_info (4R)

 380 December 28, 2012

SDDAS_USHORT scf_vnum;
SDDAS_LONG dependent_var, output_var;
SDDAS_SHORT status;

output_var = 0;
dependent_var = -1;
status = scf_bin_info ("TMMO_EXAMPLE", scf_vnum, output_var,
 FIXED_SWEEP, 0.0, 0.0, 1, LIN_SPACING, dependent_var,
 dependent_var, dependent_var, '\0', POINT_STORAGE);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by scf_bin_info routine.\n", status);
 exit (-1);
 }

Create sixteen bins, starting at 5ev, stopping at 155ev, with log spacing and the data is to be
stored using BAND STORAGE for output variable zero.

#include "SCF_codes.h"
#include "libavg_SCF.h"
#include "user_defs.h"

SDDAS_USHORT scf_vnum;
SDDAS_LONG dependent_var, output_var;
SDDAS_SHORT status;

output_var = 0;
dependent_var = -1;
status = scf_bin_info ("TMMO_EXAMPLE", scf_vnum, output_var,

VARIABLE_SWEEP, 5.0, 155.0, 16, LOG_SPACING,
dependent_var, dependent_var, dependent_var, '\0',
BAND_STORAGE);

if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by scf_bin_info routine.\n", status);
 exit (-1);
 }

Create data bins using a FIXED_SWEEP/variable width spacing binning scheme for output
variable zero defined in the SCF file TMMO_EXAMPLE. The center values are returned
in output variable two and the band correction values are returned in output variable four.

#include "libavg_SCF.h"
#include "SCF_codes.h"
#include "user_defs.h"

scf_bin_info (4R) scf_bin_info (4R)

 381 December 28, 2012

SDDAS_USHORT scf_vnum;
SDDAS_SHORT status;
SDDAS_LONG center_var, band_var, upper_band_var, output_var;

center_var = 2;
band_var = 4;
upper_band_var = -1;
output_var = 0;

status = scf_bin_info ("TMMO_EXAMPLE", scf_vnum, output_var,
 FIXED_SWEEP, 0.0, 0.0, 1, VARIABLE_SPACING, center_var,
 band_var, upper_band_var, 'L', POINT_STORAGE);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by scf_bin_info routine.\n", status);
 exit (-1);
 }

scf_bin_info (4R) scf_bin_info (4R)

 382 December 28, 2012

scf_output_center_and_bands (4R) scf_output_center_and_bands (4R)

 383 December 28, 2012

SCF_OUTPUT_CENTER_AND_BANDS
function - returns the center and band width values associated with the data bins for the
specified output variable

SYNOPSIS

#include "libavg_SCF.h"
#include "SCF_codes.h"

SDDAS_SHORT scf_output_center_and_bands (SDDAS_CHAR *filename,
 SDDAS_USHORT scf_version, SDDAS_LONG output_var,
 SDDAS_FLOAT **center_ptr, SDDAS_FLOAT **low_ptr,
 SDDAS_FLOAT **high_ptr, SDDAS_LONG *num_bands)

ARGUMENTS

filename - the name of the SCF file of interest
scf_version - SCF identification number which allows for

multiple openings of the same SCF file
output_var - output variable identification number

(numbering starts at zero)
center_ptr - pointer to the location that holds the center bin

values
low_ptr - pointer to the location that holds the lower

bands for non-contiguous bands or all band
widths for contiguous bands

high_ptr - pointer to the location that holds the upper
bands for non-contiguous bands

num_bands - the number of values returned
scf_output_center_and_bands - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for SCF_OUTPUT_CENTER_AND_BANDS

STATUS CODE EXPLANATION OF STATUS

LOCATE_SCF_NOT_FOUND the requested filename, scf_version combination has no memory allocated
for processing (user did not call scf_open for this combination)

SCF_OCENTER_OVAR_NUM invalid value specified for the output_var argument
SCF_OCENTER_NO_AVG the data has not been returned for the output variable (user did not call

scf_time_average or scf_sample_average)
SCF_OCENTER_SELECT_MISSING the output variable was not selected for processing (user did not call

scf_output_select for this output variable)
ALL_OKAY routine terminated successfully

DESCRIPTION

Scf_output_center_and_bands returns the center and band width values for bins that were
created for the output variable output_var using the information specified by the call to the
scf_bin_info routine. These center and band width values are used by the
scf_time_average / scf_sample_average module when storing the data into the data bins
for VARIABLE_SWEEP processing (refer to the explanation in the scf_bin_info write-up).

scf_output_center_and_bands (4R) scf_output_center_and_bands (4R)

 384 December 28, 2012

This module must be called after a call to the scf_time_average / scf_sample_average
module has been made; otherwise, an error code will be returned. The SCF file of interest
is referenced through the parameter filename. The filename parameter includes the full
pathname extension of the SCF file being referenced and must be less than 512 characters in
length.

The parameter scf_version allows multiple file openings for the same SCF file. If the SCF
file needs to be opened just once for processing, the same SCF version number should be
passed to all SCF routines. However, for multiple file openings, the SCF version number
should be unique and all file manipulations performed by the SCF routines will use the file
descriptors defined for the SCF version number specified. The user should call the
scf_version_number routine to retrieve a unique SCF version number instead of choosing
this value themselves. The retrieval of multiple output values from a single SCF source
does not constitute the need for multiple SCF version numbers; a single SCF version
number will suffice.

The contents of the memory locations returned by this module should NOT be altered since
the calculated center/band width values are used by the scf_time_average /
scf_sample_average routine when processing the data. If the returned values need to be
modified, for example, to take the log of the values, the user should allocate space to hold
the values, copy the values into this space and modify the values there.

The module returns two possible pointers for the location(s) that hold the lower and upper
band width values. In the case where the bands are non-contiguous, both the low_ptr and
high_ptr will reference memory locations that hold the band width values. In the case
where the bands are contiguous, there is no need to hold separate upper and lower values –
the upper limit of the current band is the lower limit of the next band. In this case, one extra
memory location is allocated, the high_ptr pointer is set to nil or 0 and low_ptr is set to
reference the location that holds the band width values.

ERRORS

All errors within this routine are returned through the status variable. The include file
SCF_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The SCF_codes.h file is described in
section 3H of the IDFS Programmers Manual.

SEE ALSO

scf_open 3R
scf_version_number 3R
scf_time_average 4R
scf_sample_average 4R
scf_bin_info 4R
scf_output_select 4R
SCF_codes 3H
libavg_SCF 4H

scf_output_center_and_bands (4R) scf_output_center_and_bands (4R)

 385 December 28, 2012

BUGS
None

EXAMPLES
Retrieve the center and band width values for the data bins created for output variable zero
which is defined in the SCF file TMMO_EXAMPLE. The following code segment
assumes that the scf_version_number module has been called to set the scf_vnum
parameter.

#include "libavg_SCF.h"
#include "SCF_codes.h"

SDDAS_USHORT scf_vnum;
register SDDAS_LONG bin;
SDDAS_LONG num_bins, output_var;
SDDAS_FLOAT *center_bin, *bin_low, *bin_high;
SDDAS_SHORT status;

output_var = 0;
status = scf_output_center_and_bands ("TMMO_EXAMPLE", scf_vnum,
 output_var, ¢er_bin, &bin_low,
 &bin_high, &num_bins);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d from scf_output_center_and_bands routine.\n", status);
 exit (-1);
 }

/* Bands are contiguous? */

if (*bin_high == NULL)
 for (bin = 0; bin < num_bins; ++bin)
 printf ("\nlow = %f high = %f", *(bin_low + bin), *(bin_low + bin + 1));

/* Bands are non-contiguous. */

else
 for (bin = 0; bin < num_bins; ++bin)
 printf ("\nlow = %f high = %f", *(bin_low + bin), *(bin_high + bin));

scf_output_center_and_bands (4R) scf_output_center_and_bands (4R)

 386 December 28, 2012

scf_output_data_index (4R) scf_output_data_index (4R)

 387 December 28, 2012

SCF_OUTPUT_DATA_INDEX
function - returns index values to access the data returned by the scf_time_average /
scf_sample_average modules

SYNOPSIS

#include "libavg_SCF.h"
#include "SCF_codes.h"

SDDAS_SHORT scf_output_data_index (SDDAS_CHAR *filename,
 SDDAS_USHORT scf_version, SDDAS_LONG output_var,
 SDDAS_FLOAT min, SDDAS_FLOAT max,
 SDDAS_LONG dependent_var, SDDAS_LONG *num_select,
 SDDAS_LONG *output_ind, SDDAS_ULONG *buf_zero_loc)

ARGUMENTS

filename - the name of the SCF file of interest
scf_version - SCF identification number which allows for multiple

openings of the same SCF file
output_var - output variable identification number (numbering

starts at zero)
min - the lower cutoff value for data that are to be put into

the data buffers
max - the upper cutoff value for data that are to be put into

the data buffers
dependent_var - the output variable whose data is to be used for the

dependent variable for 1-D vector output (numbering
starts at zero); a value of -1 should be used when
output_var represents a scalar output variable

num_select - the number of data sets returned for the output
variable in question

output_ind - an index value that is returned in order to access the
correct sub-buffer (data set) returned for the output
variable in question

buf_zero_loc - an index value that is used to get to the beginning of
all data returned for the output variable in question

scf_output_data_index - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for SCF_OUTPUT_DATA_INDEX

STATUS CODE EXPLANATION OF STATUS
LOCATE_SCF_NOT_FOUND the requested filename, scf_version combination has no memory allocated for

processing (user did not call scf_open for this combination)
SCF_OINDEX_OVAR_NUM invalid value specified for the output_var argument
SCF_OINDEX_NO_AVG the data has not been returned for the output variable (user did not call

scf_time_average or scf_sample_average)
SCF_OINDEX_NO_OUTPUT the output variable was not selected for processing (user did not call

scf_output_select for this output variable

scf_output_data_index (4R) scf_output_data_index (4R)

 388 December 28, 2012

STATUS CODE EXPLANATION OF STATUS
SCF_OINDEX_NO_MATCH the data cutoff/dependent_var combination requested was not found amongst the

defined combinations for this output variable
ALL_OKAY routine terminated successfully

DESCRIPTION

Scf_output_data_index returns index values that are used to access the data buffers
returned by the scf_time_average / scf_sample_average routines. The SCF file of interest
is referenced through the parameter filename. The filename parameter includes the full
pathname extension of the SCF file being referenced and must be less than 512 characters in
length.

The scf_time_average and scf_sample_average routines return a single pointer to the data
array which holds the data for all output variables that were processed. For each output
variable specified through the scf_output_select module, the scf_time_average routine
returns NUM_BUFFERS working buffers, with N many sub-buffers, where N reflects the
number of data cutoff/dependent_var combinations defined for the selected output variable.
The scf_sample_average routine returns one working buffer, with N many sub-buffers for
the selected output variable. In both scenarios, the value for N may vary from output
variable to output variable. The index values returned by this module are used to access the
data for a specific output variable, with specific data cutoff/dependent_var values.

The parameter scf_version allows multiple file openings for the same SCF file. If the SCF
file needs to be opened just once for processing, the same SCF version number should be
passed to all SCF routines. However, for multiple file openings, the SCF version number
should be unique and all file manipulations performed by the SCF routines will use the file
descriptors defined for the SCF version number specified. The user should call the
scf_version_number routine to retrieve a unique SCF version number instead of choosing
this value themselves. The retrieval of multiple output values from a single SCF source
does not constitute the need for multiple SCF version numbers; a single SCF version
number will suffice.

The user may elect to call the scf_output_data_index routine every time a return from the
scf_time_average / scf_sample_average routine is made or may call the
scf_output_data_index routine once for each output variable, data cutoff/dependent_var
combination requested and save the index values for later usage. In either case, the call to
the scf_output_data_index routine must be made after a call to the scf_time_average /
scf_sample_average routine has been made; otherwise, an error code is returned.

ERRORS

All errors within this routine are returned through the status variable. The include file
SCF_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The SCF_codes.h file is described in
section 3H of the IDFS Programmers Manual.

scf_output_data_index (4R) scf_output_data_index (4R)

 389 December 28, 2012

SEE ALSO
scf_open 3R
scf_version_number 3R
scf_time_average 4R
scf_sample_average 4R
scf_output_select 4R
SCF_codes 3H
libavg_SCF 4H

BUGS

None

EXAMPLES

Retrieve the index values to access data that is returned for scalar output variable zero
which is defined in the SCF file TMMO_EXAMPLE. The data which uses a data cutoff
range of 10.0 to 25.0 is to be accessed. The following code segment assumes that
scf_version_number module has been called to set the scf_vnum parameter.

#include "SCF_codes.h"
#include "libavg_SCF.h"

SDDAS_USHORT scf_vnum;
SDDAS_ULONG buf_zero_loc;
SDDAS_FLOAT data_min, data_max;
SDDAS_LONG output_var, dependent_var, num_select, output_ind;
SDDAS_SHORT status;

data_min = 10.0;
data_max = 25.0;
output_var = 0;
dependent_var = -1;

status = scf_output_data_index ("TMMO_EXAMPLE", scf_vnum, output_var,
 data_min, data_max, dependent_var, &num_select,
 &output_ind, &buf_zero_loc);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by scf_output_data_index routine.\n", status);
 exit (-1);
 }

scf_output_data_index (4R) scf_output_data_index (4R)

 390 December 28, 2012

scf_output_select (4R) scf_output_select (4R)

 391 December 28, 2012

SCF_OUTPUT_SELECT
function - specifies which output variable(s) are to be returned by the SCF time / sample
average routines

SYNOPSIS

#include "libavg_SCF.h"
#include "SCF_codes.h"

SDDAS_SHORT scf_output_select (SDDAS_CHAR *filename,
 SDDAS_USHORT scf_version, SDDAS_LONG output_var,
 SDDAS_FLOAT min, SDDAS_FLOAT max,
 SDDAS_LONG dependent_var)

ARGUMENTS

filename - the name of the SCF file of interest
scf_version - SCF identification number which allows for multiple

openings of the same SCF file
output_var - output variable identification number (numbering

starts at zero)
min - the lower cutoff value for data that are to be put into

the data buffers
max - the upper cutoff value for data that are to be put into

the data buffers
dependent_var - the output variable whose data is to be used for the

dependent variable for 1-D vector output (numbering
starts at zero); a value of -1 should be used when
output_var represents a scalar output variable

scf_output_select - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for SCF_OUTPUT_SELECT

STATUS CODE EXPLANATION OF STATUS
LOCATE_SCF_NOT_FOUND the requested filename, scf_version combination has no memory allocated for

processing (user did not call scf_open for this combination)
SCF_SELECT_OVAR_NUM invalid value specified for the output_var argument
SCF_SELECT_BIN_MISSING the data binning information has not been allocated (user did not call

scf_bin_info for this combination
SCF_SELECT_MALLOC no memory for structures which hold output variable selection
SCF_SELECT_DEF_MALLOC no memory for min/max/dependent_var values for the output variable being

processed
SCF_SELECT_DEF_REALLOC no memory for expansion of the min/max/dependent_var values for the output

variable being processed
SCF_SELECT_DVAR_NUM invalid value specified for the dependent_var argument
SCF_SELECT_DVAR_LENGTH the length of the dependent_var output variable is not the same as the length

of the output_var output variable
SCF_SELECT_BAND_MALLOC no memory for the band width values created from data for the dependent_var

output variable
ALL_OKAY routine terminated successfully

scf_output_select (4R) scf_output_select (4R)

 392 December 28, 2012

DESCRIPTION
Scf_output_select specifies which output variable(s) are to be returned by the
scf_time_average / scf_sample_average routines. The SCF file of interest is referenced
through the parameter filename. The filename parameter includes the full pathname
extension of the SCF file being referenced and must be less than 512 characters in length.
Scf_output_select must be called at least once for each output variable that is to be time or
sample averaged and must be called before the scf_time_average or scf_sample_average
routine can be called. In addition, the routine scf_bin_info must be called for the same
output variable as that specified in output_var before this module can be called; otherwise,
an error code is returned by the scf_output_select routine.

The parameter scf_version allows multiple file openings for the same SCF file. If the SCF
file needs to be opened just once for processing, the same SCF version number should be
passed to all SCF routines. However, for multiple file openings, the SCF version number
should be unique and all file manipulations performed by the SCF routines will use the file
descriptors defined for the SCF version number specified. The user should call the
scf_version_number routine to retrieve a unique SCF version number instead of choosing
this value themselves. The retrieval of multiple output values from a single SCF source
does not constitute the need for multiple SCF version numbers; a single SCF version
number will suffice.

The output variable dependent_var is utilized when the data bins are processed using a
VARIABLE_SWEEP format. When using the VARIABLE_SWEEP format, the data for
the output variable output_var is assumed to be taken as a function of a variable M, which
is termed the dependent variable. The dependent variable M must also be returned as an
output variable by the SCF. This output variable must be specified in the dependent_var
parameter. The variable output_var may be associated with multiple dependent variables;
that is, the same data can be associated with many dependent parameters as long as those
dependent parameters are being returned as output variables in the SCF. When this is the
case, multiple calls to the scf_output_select routine must be made, using the same
output_var value with different dependent_var values. The user is referred to the
scf_bin_info write-up for more information concerning data bins and storage.

ERRORS

All errors within this routine are returned through the status variable. The include file
SCF_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The SCF_codes.h file is described in
section 3H of the IDFS Programmers Manual.

SEE ALSO

scf_open 3R
scf_version_number 3R
scf_bin_info 4R
scf_time_average 4R
scf_sample_average 4R
SCF_codes 3H

scf_output_select (4R) scf_output_select (4R)

 393 December 28, 2012

libavg_SCF 4H

BUGS

None

EXAMPLES

Specify cutoff values for output variables zero and one, which are defined in the SCF file
TMMO_EXAMPLE. Output variable zero is scalar and output variable one is a 1-D vector,
with the data for the dependent variable being returned in output variable two. The
following code segment assumes that scf_version_number module has been called to set
the scf_vnum parameter.

#include "libavg_SCF.h"
#include "user_defs.h"
#include "SCF_codes.h"

SDDAS_USHORT scf_vnum;
SDDAS_LONG output_var, dependent_var;
SDDAS_FLOAT data_min, data_max;
SDDAS_SHORT status;

output_var = 0;
dependent_var = -1;
data_min = 10.0;
data_max = 25.0;
ret_val = scf_output_select ("TMMO_EXAMPLE", scf_vnum, output_var, data_min,
 data_max, dependent_var);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d from scf_output_select routine.\n", status);
 exit (-1);
 }

output_var = 1;
dependent_var = 2;
data_min = VALID_MIN;
data_max = VALID_MAX;

ret_val = scf_output_select ("TMMO_EXAMPLE", scf_vnum, output_var, data_min,
 data_max, dependent_var);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d from scf_output_select routine.\n", status);
 exit (-1);
 }

scf_output_select (4R) scf_output_select (4R)

 394 December 28, 2012

scf_sample_average (4R) scf_sample_average (4R)

 395 December 28, 2012

SCF_SAMPLE_AVERAGE
function - returns sample-averaged data buffers for selected SCF output variables

SYNOPSIS

#include "libavg_SCF.h"
#include "SCF_codes.h"

SDDAS_SHORT scf_sample_average (SDDAS_CHAR *filename,
 SDDAS_USHORT scf_version, void *scf_data_ptr,
 SDDAS_LONG num_iterations, SDDAS_FLOAT **ret_data,
 SDDAS_FLOAT **ret_frac, SDDAS_CHAR **bin_stat,
 SDDAS_SHORT *stime_yr, SDDAS_SHORT *stime_day,
 SDDAS_LONG *stime_sec, SDDAS_LONG *stime_nano,
 SDDAS_SHORT *etime_yr, SDDAS_SHORT *etime_day,
 SDDAS_LONG *etime_sec, SDDAS_LONG *etime_nano,
 SDDAS_LONG *num_output, SDDAS_LONG **output_var,
 SDDAS_LONG **output_size)

ARGUMENTS

filename - the name of the SCF file of interest
scf_version - SCF identification number which allows for multiple

openings of the same SCF file
scf_data_ptr - pointer to the scf_data structure that temporarily holds

the data for all output variables that are returned by the
SCF algorithm

num_iterations - the number of samples (iterations of the SCF
algorithm) to average together

ret_data - pointer to the data being returned (data for output
variables that are processed)

ret_frac - pointer to the normalization factors for the data being
returned

bin_stat - pointer to status flags which are associated with each
data bin returned

0 - no data has been placed into the
data bin being processed

1 - data has been placed into the
data bin being processed

stime_yr - the year value for the first iteration of the SCF
algorithm

stime_day - the day of year value for the first iteration of the SCF
algorithm

stime_sec - the time of day in seconds for the first iteration of the
SCF algorithm

stime_nano - the time of day residual in nanoseconds for the first
iteration of the SCF algorithm

scf_sample_average (4R) scf_sample_average (4R)

 396 December 28, 2012

etime_yr - the year value for the last iteration of the SCF
algorithm

etime_day - the day of year value for the last iteration of the SCF
algorithm

etime_sec - the time of day in seconds for the last iteration of the
SCF algorithm

etime_nano - the time of day residual in nanoseconds for the last
iteration of the SCF algorithm

num_output - the number of output variables processed (number of
elements in the output_var and output_size arrays)

output_var - an array which holds the output variable number(s) for
which data is returned (numbering starts with zero)

output_size - an array which holds the number of data values
returned in a data buffer for each output variable that
is processed

scf_sample_average - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for SCF_SAMPLE_AVERAGE

STATUS CODE EXPLANATION OF STATUS
LOCATE_SCF_NOT_FOUND the requested filename, scf_version combination has no memory allocated for

processing (user did not call scf_open for this combination)
SCF_SAVG_BIN_MISSING the data binning information has not been allocated (user did not call

scf_bin_info for this combination)
SCF_SAVG_SELECT_MISSING no output variables have been selected for processing (user did not call

scf_output_select for any output variable)
SCF_SAMPLE_WITH_TIME the modules scf_sample_average and scf_time_average cannot be used

interchangeably for the same filename, scf_version combination
SCF_AVG_STR_MALLOC no memory for structure which hold information pertinent to the sample-

averaged data
SCF_SINFO_MALLOC no memory for data buffer information
SCF_SDATA_MALLOC no memory for data buffers
SCF_CENTER_MALLOC no memory for center bin values
SCF_BAND_MALLOC no memory for bin band width values
SCF_TERMINATE processing must stop due to data not being on-line
SCF_NO_CENTER_VALUES no values are available to compute the center bin values for the specified center

variable
SCF_BAD_START_STOP the start / stop scan value is outside of the valid data range for the parameter

specified as the scan parameter
 Error codes returned by scf_output_data ()
ALL_OKAY routine terminated successfully

DESCRIPTION

Scf_sample_average is the SCF sample-averaged data read routine, averaging iterations of
the SCF algorithm for all selected output variables. The SCF file of interest is referenced
through the parameter filename. The filename parameter includes the full pathname
extension of the SCF file being referenced and must be less than 512 characters in length.
The data that is returned is dictated by the output variables that are selected using the
scf_output_select routine. If no output variables were selected for the SCF

scf_sample_average (4R) scf_sample_average (4R)

 397 December 28, 2012

filename/version combination, an error code is returned; otherwise, the number of output
variables processed is returned in the num_output parameter, along with the output
variable number(s) and the number of elements in the data buffers.

The parameter scf_version allows multiple file openings for the same SCF file. If the SCF
file needs to be opened just once for processing, the same SCF version number should be
passed to all SCF routines. However, for multiple file openings, the SCF version number
should be unique and all file manipulations performed by the SCF routines will use the file
descriptors defined for the SCF version number specified. The user should call the
scf_version_number routine to retrieve a unique SCF version number instead of choosing
this value themselves. The retrieval of multiple output values from a single SCF source
does not constitute the need for multiple SCF version numbers; a single SCF version
number will suffice.

The parameter scf_data_ptr is a pointer to the structure that is to hold all data pertinent to
the SCF file being processed. The structure is created and the address to this structure is
returned when a call to the create_scf_data_structure routine is made. The contents of
this structure is described in section 3S of the IDFS Programmers Manual. Since the SCF
file dictates the number of output variables and the dimensionality of these variables, the
user should call the create_scf_data_structure routine once for each distinct SCF file
being processed and this pointer should be passed in conjunction with the named SCF file
when the output variable values are being retrieved.

The data is processed one iteration at a time. Once the requested number of iterations have
been processed, the routine will return the data. If the requested number of iterations could
not be processed due to data acquisition problems, the routine will return the data and the
normalization factors will reflect the number of iterations processed so far. If more data is
put online, the next call to the scf_sample_average routine will continue to accumulate data
and will continue until the remaining iterations have been acquired.

There are N many sub-buffers, where N reflects the number of data cutoff/dependent_var
combinations defined for the selected output variable. The value for N may vary from
output variable to output variable. The user must process the data contained within these
buffers before the next call to the scf_sample_average routine is made since the module
will clear out these buffers for re-use if the requested number of iterations were processed
on the previous call. The data values must be normalized using the normalization factors
returned along with the data. The user is advised to check the value or values in the
bin_stat array. If all values are 0, no data was placed into the buffer. This can happen if
the data is excluded based upon data cutoff values.

The size and spacing of the data buffers are either defined by the user or by elements
contained within the SCF file. The user must call the scf_bin_info module for each output
variable that is to be returned before calling the scf_sample_average routine in order to
specify how the binning of the data is to occur. If the scf_sample_average routine
determines that no binning scheme has been selected, an error code is returned to the user.

scf_sample_average (4R) scf_sample_average (4R)

 398 December 28, 2012

ERRORS
All errors within this routine are returned through the status variable. The include file
SCF_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The SCF_codes.h file is described in
section 3H of the IDFS Programmers Manual.

SEE ALSO

scf_open 3R
scf_output_data 3R
create_scf_data_structure 3R
scf_version_number 3R
scf_time_average 4R
scf_output_select 4R
scf_bin_info 4R
SCF_codes 3H
libavg_SCF 4H

BUGS

None

EXAMPLES

Obtain data one iteration at a time for output variables selected from the SCF file
TMMO_EXAMPLE. This code segment assumes all necessary subroutine calls have been
made.

#include "libavg_SCF.h"
#include "SCF_codes.h"

SDDAS_USHORT scf_vnum;
SDDAS_FLOAT *ret_data, *ret_frac;
SDDAS_LONG stime_sec, stime_nano, end_time_sec, end_time_nano;
SDDAS_LONG *output_numbers, num_output, *output_size;
SDDAS_SHORT stime_yr, stime_day, end_time_yr, end_time_day, status;
SDDAS_CHAR *ret_bin;
void *scf_data_ptr;

ret_val = scf_sample_average ("TMMO_EXAMPLE", scf_vnum, scf_data_ptr, 1,
 &ret_data, &ret_frac, &ret_bin, &stime_yr,
 &stime_day, &stime_sec, &stime_nano, &end_time_yr,
 &end_time_day, &end_time_sec, &end_time_nano,
 &num_output, &output_numbers, &output_size);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by scf_sample_average routine.\n", status);
 exit (-1);
 }

scf_time_average (4R) scf_time_average (4R)

 399 December 28, 2012

SCF_TIME_AVERAGE
function - returns time-averaged data buffers for selected SCF output variables

SYNOPSIS

#include "libavg_SCF.h"
#include "SCF_codes.h"
#include "user_defs.h"

SDDAS_SHORT scf_time_average (SDDAS_CHAR *filename,
 SDDAS_USHORT scf_version, void *scf_data_ptr,
 SDDAS_FLOAT **ret_data, SDDAS_FLOAT **ret_frac,
 SDDAS_CHAR **bin_stat, SDDAS_LONG **bpix,
 SDDAS_LONG **epix, SDDAS_CHAR **ret_stat,
 SDDAS_SHORT *stime_yr, SDDAS_SHORT *stime_day,
 SDDAS_LONG *stime_sec, SDDAS_LONG *stime_nano,
 SDDAS_SHORT *etime_yr, SDDAS_SHORT *etime_day,
 SDDAS_LONG *etime_sec, SDDAS_LONG *etime_nano,
 SDDAS_LONG *num_output, SDDAS_LONG **output_var,
 SDDAS_LONG **output_size)

ARGUMENTS

filename - the name of the SCF file of interest
scf_version - SCF identification number which allows for multiple

openings of the same SCF file
scf_data_ptr - pointer to the scf_data structure that temporarily holds the

data for all output variables that are returned by the SCF
algorithm

ret_data - pointer to the data being returned (data for output variables
that are processed)

ret_frac - pointer to the normalization factors for the data being returned
bin_stat - pointer to status flags which are associated with each data bin

returned
 0 - no data has been placed into the data bin being

 processed
 1 - data has been placed into the data bin being

 processed
bpix - pointer to the starting pixel location for the data buffers

returned
epix - pointer to the ending pixel location for the data buffers

returned
ret_stat - pointer to the status of each of the data buffers being returned

UNTOUCHED_BUFFER - no data has ever been
placed into the buffer

FREE_BUFFER - no data has been placed
into the buffer being
processed (ready for re-

scf_time_average (4R) scf_time_average (4R)

 400 December 28, 2012

use)
PARTIAL_WORKING - data is being acquired

into the buffer but is not
ready for processing

BUFFER_READY - data has been acquired
into the buffer and is
ready for processing

stime_yr - the year value for the first iteration of the SCF algorithm
stime_day - the day of year value for the first iteration of the SCF

algorithm
stime_sec - the time of day in seconds for the first iteration of the SCF

algorithm
stime_nano - the time of day residual in nanoseconds for the first iteration

of the SCF algorithm
etime_yr - the year value for the last iteration of the SCF algorithm
etime_day - the day of year value for the last iteration of the SCF

algorithm
etime_sec - the time of day in seconds for the last iteration of the SCF

algorithm
etime_nano - the time of day residual in nanoseconds for the last iteration

of the SCF algorithm
num_output - the number of output variables processed (the number of

elements in the output_var and output_size arrays)
output_var - an array which holds the output variable number(s) for which

data is returned (numbering starts with zero)
output_size - an array which holds the number of data values returned in a

data buffer for each output variable that is processed
scf_time_average - routine status (see TABLE 1)

TABLE 1. Status Codes Returned for SCF_TIME_AVERAGE

STATUS CODE EXPLANATION OF STATUS

LOCATE_SCF_NOT_FOUND the requested filename, scf_version combination has not memory allocated for
processing (user did not call scf_open for this combination)

SCF_TAVG_NO_BASE_TIME the time interval information has not been set (user did not call
scf_time_reference for this combination)

SCF_TAVG_BIN_MISSING the data binning information has not been allocated (user did not call
scf_bin_info for this combination)

SCF_TAVG_SELECT_MISSING no output variable have been selected for processing (user did not call
scf_output_select for any output variable)

SCF_TIME_WITH_SAMPLE the modules scf_time_average and scf_sample_average cannot be used
interchangeably for the same filename, scf_version combination

SCF_NO_EMPTY_BUFFERS no spare buffers for data accumulation
SCF_AVG_STR_MALLOC no memory for structure which hold information pertinent to the time averaged

data
SCF_TINFO_MALLOC no memory for data buffer information
SCF_TDATA_MALLOC no memory for data buffers
SCF_CENTER_MALLOC no memory for center bin values

scf_time_average (4R) scf_time_average (4R)

 401 December 28, 2012

STATUS CODE EXPLANATION OF STATUS
SCF_BAND_MALLOC no memory for bin band width values
SCF_TERMINATE processing must stop due to data not being on-line
SCF_NO_CENTER_VALUES no values are available to compute the center bin values for the specified center

variable
SCF_BAD_START_STOP the start / stop scan value is outside of the valid data range for the parameter

specified as the scan parameter
 Error codes returned by scf_output_data ()
ALL_OKAY routine terminated successfully

DESCRIPTION

Scf_time_average is the SCF time-averaged data read routine, retrieving data for all
selected output variables for the time duration being processed. The SCF file of interest is
referenced through the parameter filename. The filename parameter includes the full
pathname extension of the SCF file being referenced and must be less than 512 characters in
length. The data that is returned is dictated by the output variables that are selected using
the scf_output_select routine. If no output variables were selected for the SCF
filename/version combination, an error code is returned; otherwise, the number of output
variables processed is returned in the num_output parameter, along with the output
variable number(s) and the number of elements in the data buffers.

The parameter scf_version allows multiple file openings for the same SCF file. If the SCF
file needs to be opened just once for processing, the same SCF version number should be
passed to all SCF routines. However, for multiple file openings, the SCF version number
should be unique and all file manipulations performed by the SCF routines will use the file
descriptors defined for the SCF version number specified. The user should call the
scf_version_number routine to retrieve a unique SCF version number instead of choosing
this value themselves. The retrieval of multiple output values from a single SCF source
does not constitute the need for multiple SCF version numbers; a single SCF version
number will suffice.

The parameter scf_data_ptr is a pointer to the structure that is to hold all data pertinent to
the SCF file being processed. The structure is created and the address to this structure is
returned when a call to the create_scf_data_structure routine is made. The contents of
this structure is described in section 3S of the IDFS Programmers Manual. Since the SCF
file dictates the number of output variables and the dimensionality of these variables, the
user should call the create_scf_data_structure routine once for each distinct SCF file
being processed and this pointer should be passed in conjunction with the named SCF file
when the output variable values are being retrieved.

This routine will process sequential iterations of the SCF algorithm, placing the data into
buffers which hold data that is accumulated over a specified time interval. In doing so,
multiple data samples may be averaged together in a single buffer. Once the time interval
has been processed, the routine will return the data buffers and a status value for each buffer
which indicates when the buffer is ready for the user to retrieve. The user must call the
module scf_time_reference before the scf_time_average module can be called since the
scf_time_reference module is used to specify the base time value and reference location

scf_time_average (4R) scf_time_average (4R)

 402 December 28, 2012

and the time interval (delta) to use to accumulate the data. If the scf_time_average routine
determines that the scf_time_reference routine has not been called, an error code is
returned.

Along with the data being returned, there is a starting location and an ending location that is
returned for each of the data buffers. The user may use these values as references to the
base location specified in the call to the scf_time_reference routine. That is, given a base
time value, a time interval and a reference location, the scf_time_average routine will
return the location of SCF data with respect to time. The user may chose to ignore these
values or may use these locations to plot data along an axis that is scaled with respect to
time.

There are a constant number of data buffers that are used by the scf_time_average module.
This number is defined as NUM_BUFFERS in the user_defs.h file. This file is described
in section 1H of the IDFS Programmers Manual. These data buffers are utilized in a cyclic
nature, with buffer 0 being re-used once buffer NUM_BUFFERS-1 has been filled. The
data buffers that are ready to be processed are flagged with the status value
BUFFER_READY. For each buffer, there are N many sub-buffers, where N reflects the
number of data cutoff/dependent_var combinations defined for the selected output variable.
The value for N may vary from output variable to output variable. The user must process
the data contained within these buffers before the next call to the scf_time_average routine
is made since the module will clear out these buffers for re-use. The data values must be
normalized using the normalization factors returned along with the data. Since the buffers
are cyclic, the user may wish to keep a variable indicating the last buffer number processed
so that the user can start at the time sample left off from the previous call to the
scf_time_average routine at the next call. It is important to note that there is one status flag
per data buffer that is used by all output variables. If no data was placed into the buffer due
to the data being out of the specified range, the result will be that a buffer is flagged as
BUFFER_READY but will not contain any data. The user is advised to check the value or
values in the bin_stat array. If all values are 0, no data was placed into the buffer.

The size and spacing of the data buffers are either defined by the user or by elements
contained within the SCF file. The user must call the scf_bin_info module for each output
variable that is to be returned before calling the scf_time_average routine in order to
specify how the binning of the data is to occur. If the scf_time_average routine determines
that no binning scheme has been selected, an error code is returned to the user.

ERRORS

All errors within this routine are returned through the status variable. The include file
SCF_codes.h, which includes all possible return values, should be included so that the
mnemonics for the return codes can be referenced. The SCF_codes.h file is described in
section 3H of the IDFS Programmers Manual.

SEE ALSO

scf_open 3R
scf_version_number 3R

scf_time_average (4R) scf_time_average (4R)

 403 December 28, 2012

scf_output_data 3R
create_scf_data_structure 3R
scf_sample_average 4R
scf_time_reference 4R
scf_output_select 4R
scf_bin_info 4R
user_defs 1H
SCF_codes 3H
libavg_SCF 4H

EXAMPLES

Obtain time-averaged data for output variables selected from the SCF file
TMMO_EXAMPLE. This code segment assumes all necessary subroutine calls have been
made.

#include "libavg_SCF.h"
#include "SCF_codes.h"

SDDAS_USHORT scf_vnum;
SDDAS_FLOAT *ret_data, *ret_frac;
SDDAS_LONG stime_sec, stime_nano, end_time_sec, end_time_nano;
SDDAS_LONG *output_numbers, num_output, *output_size, *bpix, *epix;
SDDAS_SHORT stime_yr, stime_day, end_time_yr, end_time_day, status;
SDDAS_CHAR *ret_bin, *buf_stat;
void *scf_data_ptr;

status = scf_time_average ("TMMO_EXAMPLE", scf_vnum, scf_data_ptr,
 &ret_data, &ret_frac, &ret_bin, &bpix, &epix, &buf_stat,
 &stime_yr, &stime_day, &stime_sec, &stime_nano,
 &end_time_yr, &end_time_day, &end_time_sec,
 &end_time_nano, &num_output, &output_numbers,
 &output_size);
if (status != ALL_OKAY)
 {
 printf ("\n Error %d returned by scf_time_average routine.\n", status);
 exit (-1);
 }

scf_time_average (4R) scf_time_average (4R)

 404 December 28, 2012

scf_time_reference (4R) scf_time_reference (4R)

 405 December 28, 2012

SCF_TIME_REFERENCE
function - sets the base reference time, reference location and time duration to be utilized by
the scf_time_average module

SYNOPSIS

#include "libavg_SCF.h"

void scf_time_reference (SDDAS_USHORT scf_version, SDDAS_SHORT base_year,
 SDDAS_SHORT base_day, SDDAS_LONG base_sec,
 SDDAS_LONG base_nano, SDDAS_LONG base_pix,
 SDDAS_LONG res_sec, SDDAS_LONG res_nano)

ARGUMENTS

scf_version - SCF identification number which allows for multiple
openings of the same SCF file

base_year - the year time component for the base reference time
base_day - the day of year time component for the base reference time
base_sec - the time of day in seconds for the base reference time
base_nano - the time of day residual in nanoseconds for the base reference

time
base_pix - the reference point or location associated with the base

reference time
res_sec - the time duration (delta-t) in seconds
res_nano - the time duration residual in nanoseconds

DESCRIPTION

Scf_time_reference sets the base reference time, the reference location and the time
duration values to be used by the scf_time_average routine. This routine should be called
once, after all calls to the scf_open routine have been made. If the base reference time or
the time duration is not known, the user can make a call to the scf_algorithm_start module
in order to retrieve the start time and the accumulation period (delta-t) for the first iteration
of the SCF algorithm.

The parameter scf_version allows multiple file openings for the same SCF file. If the SCF
file needs to be opened just once for processing, the same SCF version number should be
passed to all SCF routines. However, for multiple file openings, the SCF version number
should be unique and all file manipulations performed by the SCF routines will use the file
descriptors defined for the SCF version number specified. The user should call the
scf_version_number routine to retrieve a unique SCF version number instead of choosing
this value themselves. The retrieval of multiple output values from a single SCF source
does not constitute the need for multiple SCF version numbers; a single SCF version
number will suffice.

ERRORS

This routine returns no status or error codes.

scf_time_reference (4R) scf_time_reference (4R)

 406 December 28, 2012

SEE ALSO
scf_time_average 4R
scf_algorithm_start 4R
scf_open 3R
scf_version_number 3R
libavg_SCF 4H

BUGS

None

EXAMPLES

The base reference time to be utilized is 1992, day 23, time 00:25:36 which is equal to 1536
seconds. The resolution to be utilized is 1.500 seconds and the reference location is at zero.
Assume that the variable scf_vnum has been set by a previous call to the
scf_version_number routine.

scf_time_reference (scf_vnum, 1992, 23, 1536, 0, 0, 1, 500000000);

libbase_idfs (1H) libbase_idfs (1H)

 407 December 28, 2012

LIBBASE_IDFS.H
function - contains prototypes for the basic set of IDFS data retrieval routines

SYNOPSIS

#include "libbase_idfs.h"

DESCRIPTION

The libbase_idfs.h include file contains the ANSI C prototypes for the basic set of IDFS
data retrieval routines that return data one sample set or one spin at a time. These routines
can be found in the 1R section of the IDFS Programmers Manual. This file should be
included in the source code wherever an IDFS routine is called from to ensure that the
correct number of arguments are used and to ensure that the argument types match.

SEE ALSO

libtrec_idfs 2H

libbase_idfs (1H) libbase_idfs (1H)

 408 December 28, 2012

ret_codes (1H) ret_codes (1H)

 409 December 28, 2012

RET_CODES.H
function - defines possible return values and associated mnemonics for the IDFS software

SYNOPSIS

#include "ret_codes.h"

DESCRIPTION

The ret_codes.h include file holds all of the defined return values for the IDFS routines.
All return values are associated with a mnemonic through a define statement. The user of
the IDFS routines should include this file and use the mnemonics defined for the return
values so that if these return values are changed in the future to some other value, code does
not have to be modified.

CONTENTS OF FILE

#define ALL_OKAY 1
#define EOF_STATUS 0
#define LOS_STATUS 9
#define NEXT_FILE_STATUS 12
#define READ_SPIN_TERMINATE 15
#define READ_SPIN_DATA_GAP 18
#define CENTER_CONVERSION 4
#define DREC_NO_SENSOR 2
#define DREC_EOF_NO_SENSOR 3
#define DREC_EOF_SENSOR 6
#define TENSOR_NO_SENSOR 2
#define TENSOR_EOF_NO_SENSOR 3
#define TENSOR_EOF_SENSOR 6
#define RESET_CSET_MALLOC -1
#define BUF_BIN_MALLOC -2
#define LOCATE_NOT_FOUND -3
#define LOCATE_PTR_MALLOC -4
#define LOCATE_EX_REALLOC -5
#define CP_BAD_FRAC -6
#define CP_BAD_TIMES -7
#define OPEN_PTR_MALLOC -8
#define OPEN_EX_REALLOC -9
#define RTIME_NO_HEADER -10
#define RTIME_NO_DATA -11
#define CUR_TIME_NOT_FOUND -12
#define ALL_FLAG_MALLOC -13
#define ALLOC_HDR_READ_ERROR -14
#define ALLOC_HDR_MALLOC -15
#define ALLOC_HDR_REALLOC -16
#define CAL_DATA_MALLOC -17
#define PARTIAL_READ -18
#define SEL_SEN_NOT_FOUND -19

ret_codes (1H) ret_codes (1H)

 410 December 28, 2012

#define TIME_OFF_MALLOC -20
#define SCOM_TBL_MALLOC -21
#define SCOM_INDEX_MALLOC -22
#define SCOM_SEN_PTR_MALLOC -23
#define SCOM_PTR_MALLOC -24
#define POT_INFO_IDF_ELE_NOT_FOUND -25
#define POT_INFO_IDF_MANY_BYTES -26
#define POT_INFO_IDF_TBL_NUM -27
#define POT_INFO_IDF_CON_NUM -28
#define POT_INFO_IDF_NO_ENTRY -29
#define CCOM_MATCH_MALLOC -30
#define CCOM_VAL_MALLOC -31
#define CONV_MODE_MISMATCH -32
#define GET_ACTION_MALLOC -33
#define POS_NOT_FOUND -34
#define FILE_POS_MODE -35
#define POS_DATA_READ_ERROR -36
#define POS_HDR_READ_ERROR -37
#define POS_HDR_MALLOC -38
#define POS_HDR_REALLOC -39
#define PBACK_LOS -40
#define PBACK_NEXT_FILE -41
#define RHDR_READ_ERROR -42
#define RHDR_HDR_MALLOC -43
#define RHDR_HDR_REALLOC -44
#define FILL_HEADER -45
#define DREC_NOT_FOUND -46
#define CONV_CAL_MALLOC -47
#define DREC_NO_FILES -48
#define DREC_READ_ERROR -49
#define DREC_HDR_READ_ERROR -50
#define DREC_HDR_MALLOC -51
#define DREC_HDR_REALLOC -52
#define RESET_EULER_REALLOC -53
#define RESET_MODE_REALLOC -54
#define RESET_NOT_FOUND -55
#define RESET_DATA_MALLOC -56
#define RESET_DATA_REALLOC -57
#define RESET_ANGLE_REALLOC -58
#define FILE_POS_EULER -59
#define TOO_MANY_EULER -60
#define ALLOC_EV_REALLOC -61
#define CRIT_TBL_NOT_FOUND -62
#define CONST_ANG_MALLOC -63
#define CONST_TEMP_MALLOC -64
#define CNVT_NOT_FOUND -65

ret_codes (1H) ret_codes (1H)

 411 December 28, 2012

#define TBL_MISC_MALLOC -66
#define TBL_MALLOC -67
#define TBL_IDF_ELE_NOT_FOUND -68
#define TBL_IDF_MANY_BYTES -69
#define TBL_IDF_TBL_NUM -70
#define TBL_IDF_CON_NUM -71
#define TBL_IDF_NO_ENTRY -72
#define UPDATE_IDF_ELE_NOT_FOUND -73
#define UPDATE_IDF_MANY_BYTES -74
#define UPDATE_IDF_TBL_NUM -75
#define UPDATE_IDF_CON_NUM -76
#define UPDATE_IDF_NO_ENTRY -77
#define SEN_IDF_ELE_NOT_FOUND -78
#define SEN_IDF_MANY_BYTES -79
#define SEN_IDF_TBL_NUM -80
#define SEN_IDF_CON_NUM -81
#define SEN_IDF_NO_ENTRY -82
#define ONCE_IDF_ELE_NOT_FOUND -83
#define ONCE_IDF_MANY_BYTES -84
#define ONCE_IDF_TBL_NUM -85
#define ONCE_IDF_CON_NUM -86
#define ONCE_IDF_NO_ENTRY -87
#define ONCE_DATA_MALLOC -88
#define ONCE_D_TYPE_MALLOC -89
#define ONCE_TBL_INFO_MALLOC -90
#define ONCE_CTARGET_MALLOC -91
#define ONCE_CLEN_MALLOC -92
#define ONCE_TDW_LEN_MALLOC -93
#define ONCE_SEN_STAT_MALLOC -94
#define BAD_SCPOT_FORMAT -95
#define BAD_PA_FORMAT -96
#define MODE_TBL_SZ_IDF_ELE_NOT_FOUND -97
#define MODE_TBL_SZ_IDF_MANY_BYTES -98
#define MODE_TBL_SZ_IDF_TBL_NUM -99
#define MODE_TBL_SZ_IDF_CON_NUM -100
#define MODE_TBL_SZ_IDF_NO_ENTRY -101
#define EXP_IDF_ELE_NOT_FOUND -102
#define EXP_IDF_MANY_BYTES -103
#define EXP_IDF_TBL_NUM -104
#define EXP_IDF_CON_NUM -105
#define EXP_IDF_NO_ENTRY -106
#define CRIT_IDF_ELE_NOT_FOUND -107
#define CRIT_IDF_MANY_BYTES -108
#define CRIT_IDF_TBL_NUM -109
#define CRIT_IDF_CON_NUM -110
#define CRIT_IDF_NO_ENTRY -111

ret_codes (1H) ret_codes (1H)

 412 December 28, 2012

#define NEW_IDF_ELE_NOT_FOUND -112
#define NEW_IDF_MANY_BYTES -113
#define NEW_IDF_TBL_NUM -114
#define NEW_IDF_CON_NUM -115
#define NEW_IDF_NO_ENTRY -116
#define NEW_SCALE_MALLOC -117
#define CONV_CAL_VECTOR_MISMATCH -118
#define TIMING_MALLOC -119
#define PBACK_NO_HEADER -120
#define PBACK_NO_DATA -121
#define CHK_DATA_NOT_FOUND -122
#define NUM_CAL_REALLOC -123
#define FILE_POS_DATA_GAP -124
#define READ_IN_MALLOC -125
#define READ_IN_IDF_ELE_NOT_FOUND -126
#define READ_IN_IDF_MANY_BYTES -127
#define READ_IN_IDF_TBL_NUM -128
#define READ_IN_IDF_CON_NUM -129
#define READ_IN_IDF_NO_ENTRY -130
#define CREATE_TBL_MALLOC -131
#define CREATE_IDF_ELE_NOT_FOUND -132
#define CREATE_IDF_MANY_BYTES -133
#define CREATE_IDF_TBL_NUM -134
#define CREATE_IDF_CON_NUM -135
#define CREATE_IDF_NO_ENTRY -136
#define CONST_IDF_ELE_NOT_FOUND -137
#define CONST_IDF_MANY_BYTES -138
#define CONST_IDF_TBL_NUM -139
#define CONST_IDF_CON_NUM -140
#define CONST_IDF_NO_ENTRY -141
#define SET_VWIDTH_BAND_MALLOC -142
#define SET_VWIDTH_CENTER_MALLOC -143
#define BAD_VFMT -144
#define DKEY_PROJECT -145
#define DKEY_MISSION -146
#define DKEY_EXPERIMENT -147
#define DKEY_INSTRUMENT -148
#define DKEY_VINST -149
#define FILL_SEN_NOT_FOUND -150
#define FILL_SEN_MALLOC -151
#define FILL_SEN_REALLOC -152
#define FILL_SEN_BASE_MALLOC -153
#define FILL_SEN_BASE_REALLOC -154
#define FILL_SEN_TBL_MALLOC -155
#define FILL_BIN_MISSING -156
#define FILL_NOT_FOUND -157

ret_codes (1H) ret_codes (1H)

 413 December 28, 2012

#define FILL_ARRAY_MALLOC -158
#define FILL_UNITS_MALLOC -159
#define FILL_UNITS_REALLOC -160
#define FILL_SWP_MALLOC -161
#define FILL_SWP_REALLOC -162
#define FILL_DATA_MALLOC -163
#define FILL_INFO_MALLOC -164
#define NO_EMPTY_BUFFERS -165
#define UNITS_IND_NOT_FOUND -166
#define UNITS_NO_SENSOR -167
#define UNITS_NO_MATCH -168
#define COLLAPSE_NOT_FOUND -169
#define COLLAPSE_MALLOC -170
#define COLLAPSE_SEN_MALLOC -171
#define COLLAPSE_DATA_MALLOC -172
#define THETA_CHK_MALLOC -173
#define THETA_BIN_MALLOC -174
#define ORDER_THETA_MALLOC -175
#define PHI_DIFF_UNITS -176
#define FILL_PHI_FIRST -177
#define FILL_PHI_LAST -178
#define THETA_DIFF_UNITS -179
#define CDIMEN_NOT_FOUND -180
#define CDIMEN_COLLAPSE -181
#define CDIMEN_MANY_SCAN -182
#define CENTER_NOT_FOUND -183
#define CENTER_NO_SENSOR -184
#define BPTR_NOT_FOUND -185
#define CENTER_TMP_MALLOC -186
#define BAND_MALLOC -187
#define CENTER_MALLOC -188
#define SET_BIN_NOT_FOUND -189
#define SET_BIN_MALLOC -190
#define SET_BIN_INDEX_MALLOC -191
#define SET_BIN_BAD_FMT -192
#define CALC_TRES_NOT_FOUND -193
#define CALC_CENTER_DREC -194
#define RET_PHI_NOT_FOUND -195
#define CPTR_RET_PHI -196
#define NO_RET_PHI -197
#define FILL_THETA_NOT_FOUND -198
#define FILL_THETA_COLLAPSE -199
#define IMAGE_NOT_FOUND -200
#define IMAGE_READ_ERROR -201
#define IMAGE_HDR_MALLOC -202
#define IMAGE_HDR_REALLOC -203

ret_codes (1H) ret_codes (1H)

 414 December 28, 2012

#define NEXT_FILE_TIME_NOT_FOUND -204
#define NEXT_FILE_TIME_FILE_OPEN -205
#define NEXT_FILE_TIME_INFO_DUP -206
#define PA_MAIN_DATA_MISSING -207
#define SET_SCAN_NOT_FOUND -208
#define SCAN_BIN_MISSING -209
#define SET_SCAN_TBL_MALLOC -210
#define SCAN_INDEX_MALLOC -211
#define SCAN_IDF_ELE_NOT_FOUND -212
#define SCAN_IDF_MANY_BYTES -213
#define SCAN_IDF_TBL_NUM -214
#define SCAN_IDF_CON_NUM -215
#define SCAN_IDF_NO_ENTRY -216
#define BUF_BIN_NOT_FOUND -217
#define FILL_DISC_NOT_FOUND -218
#define FILL_DISC_BIN_MISSING -219
#define FILL_DISC_NO_PHI -220
#define FILL_DISC_MALLOC -221
#define DISC_DATA_MALLOC -222
#define DISC_TMP_MALLOC -223
#define TBL_VAR_NOT_CAL -224
#define TBL_VAR_NOT_RAW -225
#define CNVT_BAD_TBL_OPER -226
#define CNVT_NO_TMP -227
#define CNVT_TMP_MALLOC -228
#define CNVT_BAD_TBL_NUM -229
#define MODE_PTR_MALLOC -230
#define MODE_TBL_MISC_MALLOC -231
#define MODE_TBL_IDF_ELE_NOT_FOUND -232
#define MODE_TBL_IDF_MANY_BYTES -233
#define MODE_TBL_IDF_TBL_NUM -234
#define MODE_TBL_IDF_CON_NUM -235
#define MODE_TBL_IDF_NO_ENTRY -236
#define MODE_TBL_VAR_NOT_CAL -237
#define MODE_TBL_VAR_NOT_RAW -238
#define MODE_TBL_MALLOC -239
#define ASCII_AFTER_SENSOR -240
#define CONV_MODE_BAD_MODE -241
#define CONV_MODE_BAD_TBL_NUM -242
#define FILL_SEN_MODE_TYPE -243
#define UNITS_IND_MODE_TYPE -244
#define MODE_INFO_NOT_FOUND -245
#define MODE_INFO_MALLOC -246
#define MODE_INFO_REALLOC -247
#define MODE_INFO_BASE_MALLOC -248
#define MODE_INFO_BASE_REALLOC -249

ret_codes (1H) ret_codes (1H)

 415 December 28, 2012

#define MODE_INFO_TBL_MALLOC -250
#define MODE_INFO_NO_MODES -251
#define MODE_UNITS_IND_NOT_FOUND -252
#define MODE_UNITS_FILE_OPEN -253
#define MODE_UNITS_INFO_DUP -254
#define MODE_UNITS_NO_MODE -255
#define MODE_UNITS_NO_MATCH -256
#define FILL_MODE_ARRAY_MALLOC -257
#define MODE_UNITS_MALLOC -258
#define MODE_UNITS_REALLOC -259
#define MODE_DATA_MALLOC -260
#define FILL_MODE_NOT_FOUND -261
#define FILL_MODE_FILE_OPEN -262
#define FILL_MODE_INFO_DUP -263
#define MODES_NOT_REQUESTED -264
#define ALLOC_MODE_INFO_MALLOC -265
#define MODE_FILE_OPEN -266
#define MODE_INFO_DUP -267
#define CRIT_ACT_MALLOC -268
#define FILL_BASE_TIME_MISSING -269
#define FILL_DISC_BASE_TIME_MISSING -270
#define FILL_MODE_BASE_TIME_MISSING -271
#define CREATE_DATA_MALLOC -272
#define CREATE_DATA_ALL_MALLOC -273
#define CREATE_DATA_ALL_REALLOC -274
#define RESET_PITCH_MALLOC -275
#define RESET_PITCH_REALLOC -276
#define PITCH_MALLOC -277
#define PA_TBL_MALLOC -278
#define SWEEP_TIME_MALLOC -279
#define PINFO_IDF_ELE_NOT_FOUND -280
#define PINFO_IDF_MANY_BYTES -281
#define PINFO_IDF_TBL_NUM -282
#define PINFO_IDF_CON_NUM -283
#define PINFO_IDF_NO_ENTRY -284
#define FILE_POS_PA -285
#define PA_BAD_SRC -286
#define PA_BAD_FRAC -287
#define PA_UNIT_NORMAL -288
#define PA_UNIT_MALLOC -289
#define PA_DATA_MALLOC -290
#define CNVT_BAD_DTYPE -291
#define PA_BAD_TIMES -292
#define SWEEP_NOT_FOUND -293
#define SWEEP_BIN_MISSING -294
#define SWEEP_UNITS_MALLOC -295

ret_codes (1H) ret_codes (1H)

 416 December 28, 2012

#define SWEEP_UNITS_REALLOC -296
#define SWEEP_SWP_MALLOC -297
#define SWEEP_SWP_REALLOC -298
#define SWEEP_DATA_MALLOC -299
#define SWEEP_INFO_MALLOC -300
#define SWEEP_WITH_FILL -301
#define FILL_WITH_SWEEP -302
#define SMODE_UNITS_MALLOC -303
#define SMODE_UNITS_REALLOC -304
#define SMODE_DATA_MALLOC -305
#define ALLOC_SMODE_INFO_MALLOC -306
#define SWEEP_MODE_NOT_FOUND -307
#define SWEEP_MODE_FILE_OPEN -308
#define SWEEP_MODE_INFO_DUP -309
#define SWEEP_MODES_NOT_REQUESTED -310
#define SWEEP_MODE_WITH_FILL -311
#define FILL_WITH_SWEEP_MODE -312
#define SWEEP_DISC_NOT_FOUND -313
#define SWEEP_DISC_BIN_MISSING -314
#define SWEEP_DISC_NO_PHI -315
#define SWEEP_DISC_WITH_FILL -316
#define FILL_WITH_SWEEP_DISC -317
#define RESET_DCOS_MALLOC -318
#define RESET_DCOS_VAL_MALLOC -319
#define RESET_DCOS_VAL_REALLOC -320
#define MASS_PA_ERROR -321
#define CHRG_PA_ERROR -322
#define GET_FPTR_NOT_FOUND -323
#define RET_CBPTR_NOT_FOUND -324
#define RET_CBPTR_NO_SENSOR -325
#define RET_CENTER_NOT_FOUND -326
#define NO_PA_CONSTANT -327
#define NPHI_NOT_FOUND -328
#define NPHI_NO_BINS -329
#define NBINS_NOT_FOUND -330
#define NBINS_NO_BINS -331
#define WRONG_DATA_STRUCTURE -332
#define VIDF_OPEN_PTR_MALLOC -333
#define VIDF_OPEN_EX_REALLOC -334
#define FILL_ENV_NOT_FOUND -335
#define FILL_ENV_SCALAR -336
#define FILL_ENV_BASE_TIME_MISSING -337
#define FILL_ENV_BIN_MISSING -338
#define FILL_ENV_WITH_SWEEP -339
#define CP_MAIN_DATA_MISSING -340
#define CP_BAD_SRC -341

ret_codes (1H) ret_codes (1H)

 417 December 28, 2012

#define BAD_CP_FORMAT -342
#define COMPUTE_MOMENTS -343
#define CP_INFO_IDF_ELE_NOT_FOUND -344
#define CP_INFO_IDF_MANY_BYTES -345
#define CP_INFO_IDF_TBL_NUM -346
#define CP_INFO_IDF_CON_NUM -347
#define CP_INFO_IDF_NO_ENTRY -348
#define ONCE_CSCOPE_MALLOC -349
#define SET_VWIDTH_UPPER_BAND_MALLOC -350
#define ONCE_BAD_HEADER_FMT -351
#define ONCE_BAD_TENSOR_RANK -352
#define ONCE_BAD_TENSOR_LENGTHS -353
#define HDR_FMT_ONE_MALLOC -354
#define HDR_FMT_TWO_MALLOC -355
#define HDR_FMT_TWO_DQUAL -356
#define UPDATE_IDF_BAD_PA_DEF -357
#define UPDATE_IDF_NO_FILL -358
#define CREATE_TENSOR_DATA_ALL_MALLOC -359
#define CREATE_TENSOR_DATA_ALL_REALLOC -360
#define CREATE_TENSOR_DATA_MALLOC -361
#define WRONG_HEADER_FORMAT -362
#define TENSOR_NOT_FOUND -363
#define TENSOR_NO_FILES -364
#define TENSOR_READ_ERROR -365
#define TENSOR_DQUAL_MALLOC -366
#define TENSOR_DQUAL_REALLOC -367
#define TENSOR_HDR_READ_ERROR -368
#define TENSOR_HDR_MALLOC -369
#define TENSOR_HDR_REALLOC -370
#define TENSOR_MODE_MALLOC -371
#define TENSOR_MODE_REALLOC -372
#define TENSOR_DATA_MALLOC -373
#define TENSOR_DATA_REALLOC -374
#define ONCE_BAD_NUM_TBLS -375
#define ONCE_BAD_CAL_TARGET -376
#define ONCE_BAD_MAX_NSS -377
#define ONCE_BAD_SMP_ID -378
#define ONCE_BAD_DA_METHOD -379
#define ONCE_BAD_SWP_LEN -380
#define ONCE_BAD_SEN_MODE -381
#define TENSOR_DATA_TDW_LEN -382
#define COLLAPSE_DATA_ADDRESS -383
#define CHK_TDATA_NOT_FOUND -384
#define NEG_BIN_STAT -385
#define FIRST_SEN_NOT_FOUND -386
#define START_SPIN_NOT_FOUND -387

ret_codes (1H) ret_codes (1H)

 418 December 28, 2012

#define START_SPIN_NO_POS -388
#define START_SPIN_NO_SPIN -389
#define START_SPIN_ETIME -390
#define START_SPIN_MALLOC -391
#define START_SPIN_ALL_MALLOC -392
#define ONCE_SPIN_OFF_MALLOC -393
#define TURN_OFF_PA_NOT_FOUND -394
#define TURN_ON_EA_NOT_FOUND -395
#define START_ELE_BAD_SENSOR -396
#define START_ELE_SPIN_NO_SENSOR -397
#define READ_SPIN_NOT_FOUND -398
#define READ_SPIN_NO_START -399
#define READ_SPIN_ALL_REALLOC -400
#define READ_SPIN_PARTIAL -401
#define SPIN_INFO_MALLOC -402
#define SPIN_UNITS_MALLOC -403
#define SPIN_UNITS_REALLOC -404
#define SPIN_SWP_MALLOC -405
#define SPIN_SWP_REALLOC -406
#define SPIN_DATA_MALLOC -407
#define SPIN_DATA_PIX_NOT_FOUND -408
#define SPIN_DATA_PIX_WITH_FILL_SWEEP -409
#define SPIN_DATA_PIX_BIN_MISSING -410
#define SPIN_DATA_PIX_CENTER_BAND_MISSING -411
#define SPIN_DATA_PIX_NO_SPIN -412
#define SPIN_DATA_NOT_FOUND -413
#define SPIN_DATA_BIN_MISSING -414
#define SPIN_DATA_WITH_FILL_SWEEP -415
#define SPIN_DATA_CENTER_BAND_MISSING -416
#define SPIN_DATA_NO_SPIN -417
#define FILL_CENTER_BAND_MISSING -418
#define FILL_ENV_CENTER_BAND_MISSING -419
#define FILL_DISC_CENTER_BAND_MISSING -420
#define SWEEP_CENTER_BAND_MISSING -421
#define SWEEP_DISC_CENTER_BAND_MISSING -422
#define NEW_BAD_TBL_OFFSET -423
#define UPDATE_IDF_BAD_SPIN_DEF -424
#define SPIN_SRC_MALLOC -425
#define START_SPIN_TIME_MALLOC -426
#define SPIN_SRC_BAD_SRC -427
#define SPIN_SINFO_IDF_ELE_NOT_FOUND -428
#define SPIN_SINFO_IDF_MANY_BYTES -429
#define SPIN_SINFO_IDF_TBL_NUM -430
#define SPIN_SINFO_IDF_CON_NUM -431
#define SPIN_SINFO_IDF_NO_ENTRY -432
#define FILE_POS_SPIN -433

ret_codes (1H) ret_codes (1H)

 419 December 28, 2012

#define SPIN_SRC_MAIN_DATA_MISSING -434
#define READ_SPIN_DSRC_READ -435
#define READ_SPIN_DSRC_BACK_SPIN -436
#define READ_SPIN_SENSOR_NOT_FOUND -437
#define ONCE_CDTYPE_MALLOC -438
#define CP_STR_MALLOC -439
#define CP_DATA_MALLOC -440
#define FILE_POS_CP -441
#define CNVT_NO_ADV -442
#define CNVT_BAD_BUF_NUM -443
#define CNVT_SAME_BUF_NUM -444
#define UPDATE_IDF_BAD_POT_DEF -445
#define POT_TBL_MALLOC -446
#define POT_BAD_SRC -447
#define POT_BAD_FRAC -448
#define POT_MALLOC -449
#define TURN_ON_CP_NOT_FOUND -450
#define POT_DATA_MALLOC -451
#define POT_MAIN_DATA_MISSING -452
#define FILE_POS_POT -453
#define POT_BAD_TIMES -454
#define RESET_POT_REALLOC -455
#define UPDATE_IDF_BAD_PMI_DEF -456
#define SWP_TIMES_TMP_MALLOC -457
#define READ_IN_BAD_TBL_OFFSET -458
#define CREATE_BAD_TBL_OFFSET` -459
#define OVERRIDE_NOT_FOUND -460
#define OVERRIDE_NO_POT -461
#define OVERRIDE_NO_POT_TBLS -462
#define OVERRIDE_TOO_MANY_POT_TBLS -463
#define OVERRIDE_TBL_FMT_MALLOC -464
#define OVERRIDE_BAD_TBL_FMT_VALUE -465
#define RESET_CP_REALLOC -466
#define RESET_TINFO_MALLOC -467
#define NO_CP_CONSTANT -468
#define CP_TBL_MALLOC -469
#define UPDATE_IDF_BAD_CP_DEF -470
#define CREATE_DSTR_NOT_FOUND -471
#define EULER_MALLOC -472
#define EULER_MAIN_DATA_MISSING -473
#define EULER_TBL_MALLOC -474
#define BAD_EULER_FORMAT -475
#define EULER_AXIS_MALLOC -476
#define LESS_EULER_CONSTANT_ANGLES -477
#define LESS_EULER_CONSTANT_AXIS -478
#define MORE_EULER_CONSTANT_ANGLES -479

ret_codes (1H) ret_codes (1H)

 420 December 28, 2012

#define MORE_EULER_CONSTANT_AXIS -480
#define EULER_IDF_DATA_MALLOC -481
#define EULER_BAD_SRC -482
#define EULER_BAD_TIMES -483
#define EULER_BAD_FRAC -484
#define EULER_INFO_IDF_ELE_NOT_FOUND -485
#define EULER_INFO_IDF_MANY_BYTES -486
#define EULER_INFO_IDF_TBL_NUM -487
#define EULER_INFO_IDF_CON_NUM -488
#define EULER_INFO_IDF_NO_ENTRY -489
#define TRANS_3D_BINNED_MALLOC -490
#define DESTROY_NO_IDF_DATA -491
#define DESTROY_NO_TENSOR_DATA -492
#define FILE_POS_INVALID_DATA -493
#define BKGD_MAIN_DATA_MISSING -494
#define BKGD_BAD_SRC -495
#define BAD_BKGD_FORMAT -496
#define BKGD_TBL_MALLOC -497
#define BKGD_MALLOC -498
#define BKGD_DATA_MALLOC -499
#define BKGD_IDF_DATA_MALLOC -500
#define BKGD_INFO_IDF_ELE_NOT_FOUND -501
#define BKGD_INFO_IDF_MANY_BYTES -502
#define BKGD_INFO_IDF_TBL_NUM -503
#define BKGD_INFO_IDF_CON_NUM -504
#define BKGD_INFO_IDF_NO_ENTRY -505
#define FILE_POS_BKGD -506
#define BKGD_BAD_TIMES -507
#define RESET_BKGD_REALLOC -508
#define BKGD_BAD_FRAC -509
#define UPDATE_IDF_BAD_BKGD_DEF -510
#define NO_BKGD_CONSTANT -511

#define UTIL_START_CODE -1
#define UTIL_STOP_CODE -511

user_defs (1H) user_defs (1H)

 421 December 28, 2012

USER_DEFS.H
function - defines mnemonics that can be utilized for coding purposes

SYNOPSIS

#include "user_defs.h"

DESCRIPTION

The user_defs.h include file holds mnemonics available for use with some of the IDFS
routines. All mnemonic are initialized through a define statement. The user may include
this file and use the mnemonics to help improve the readability of the calling sequence for
some of the IDFS routines.

CONTENTS OF FILE

#define SENSOR 1
#define SWEEP_STEP 2
#define CAL_DATA 3
#define MODE 4
#define D_QUAL 5
#define PITCH_ANGLE 6
#define START_AZ_ANGLE 7
#define STOP_AZ_ANGLE 8
#define SC_POTENTIAL 9
#define BACKGROUND 10
#define MAX_DATA_TYPE 10
#define MAX_UNITS_BUFFERS 9
#define OUTSIDE_MIN -3.4e38
#define OUTSIDE_MAX 3.4e38
#define VALID_MIN -3.0e38
#define VALID_MAX 3.0e38
#define UNTOUCHED_BUFFER -2
#define FREE_BUFFER -1
#define PARTIAL_WORKING 0
#define BUFFER_READY 1
#define NUM_BUFFERS 5
#define LEADING_EDGE 1
#define TRAILING_EDGE 0
#define MASS_DIMEN 1
#define PHI_DIMEN 2
#define THETA_DIMEN 3
#define SCAN_DIMEN 4
#define DATA_DIMEN 5
#define NO_DIMEN 6
#define CHARGE_DIMEN 7
#define SCAN_INDEX 0
#define THETA_INDEX 1
#define PHI_INDEX` 2

user_defs (1H) user_defs (1H)

 422 December 28, 2012

#define MASS_INDEX 3
#define CHARGE_INDEX 4
#define SCALAR_INDEX 5
#define DIMEN_OFF 0
#define DIMEN_ON 1
#define DIMEN_CONSTANT 2
#define NO_AVG 1
#define STRAIGHT_AVG 2
#define STRAIGHT_INT 3
#define SPHERICAL_INT 4
#define STRAIGHT_AVG_AZ 5
#define FLUX_INT 6
#define MOMENTS_INT 7
#define POINT_INT 1
#define BAND_INT 2
#define FIXED_SWEEP 1
#define VARIABLE_SWEEP 2
#define ZERO_SPACING 0
#define LIN_SPACING 1
#define LOG_SPACING 2
#define VARIABLE_SPACING 3
#define POINT_STORAGE 1
#define BAND_STORAGE 2
#define NO_BIN_FILL 1
#define LIN_ROW_COL 2
#define LIN_COL_ROW 3
#define CON_ROW_COL 4
#define CON_COL_ROW 5
#define LEAST_SQ_FIT 6
#define TORAD 0.017453292519943
#define PA_NOT_APPLICABLE 0
#define PA_READY 1
#define PA_DB_ERROR 2
#define PA_DATA_MISSING 3
#define PA_IR_ERROR 4
#define SPIN_SRC_NOT_APPLICABLE 0
#define SPIN_SRC_READY 1
#define SPIN_SRC_DB_ERROR 2
#define SPIN_SRC_DATA_MISSING 3
#define SPIN_SRC_IR_ERROR 4
#define POT_NOT_APPLICABLE 0
#define POT_READY 1
#define POT_DB_ERROR 2
#define POT_DATA_MISSING 3
#define POT_IR_ERROR 4
#define EULER_NOT_APPLICABLE 0

user_defs (1H) user_defs (1H)

 423 December 28, 2012

#define EULER_READY 1
#define EULER_DB_ERROR 2
#define EULER_DATA_MISSING 3
#define EULER_IR_ERROR 4
#define CP_NOT_APPLICABLE 0
#define CP_READY 1
#define CP_DB_ERROR 2
#define CP_DATA_MISSING 3
#define CP_IR_ERROR 4
#define BKGD_NOT_APPLICABLE 0
#define BKGD_READY 1
#define BKGD_DB_ERROR 2
#define BKGD_DATA_MISSING 3
#define BKGD_IR_ERROR 4
#define NO_SPECIFIED_CS -1
#define SPACECRAFT_CS 0
#define PMI_CS 1
#define GEI_CS 2
#define GEO_CS 3
#define GSE_CS 4
#define GSM_CS 5
#define SM_CS 6
#define MAG_CS 7
#define HEE_CS 8
#define HAE_CS 9
#define HEEQ_CS 10

user_defs (1H) user_defs (1H)

 424 December 28, 2012

libtrec_idfs (2H) libtrec_idfs (2H)

 425 December 28, 2012

LIBTREC_IDFS.H
function - contains prototypes for the IDFS routines that return time-averaged, sample-
averaged, or spin-averaged data

SYNOPSIS

#include "libtrec_idfs.h"

DESCRIPTION

The libtrec_idfs.h include file contains the ANSI C prototypes for the IDFS routines that
are used to retrieve data that is time-averaged, sample-averaged or spin-averaged. These
routines can be found in the 2R section of the IDFS Programmers Manual. This file should
be included in the source code wherever an IDFS routine is called from to ensure that the
correct number of arguments are used and to ensure that the argument types match.

SEE ALSO

libbase_idfs 1H

libtrec_idfs (2H) libtrec_idfs (2H)

 426 December 28, 2012

SCF_codes (3H) SCF_codes (3H)

 427 December 28, 2012

SCF_CODES.H
function - defines possible return values and associated mnemonics for the SCF software

SYNOPSIS

#include "SCF_codes.h"

DESCRIPTION

The SCF_codes.h include file holds all of the defined return values for the SCF routines
defined in sections 3R and 4R. All return values are associated with a mnemonic through a
define statement. The user of the SCF routines should include this file and use the
mnemonics defined for the return values. This allows for the values to be changed in the
future with no code modification.

CONTENTS OF FILE

#define ALL_OKAY 1
#define SCF_TERMINATE 45
#define NO_SCF_FILE -3001
#define SCF_CONTACT_MALLOC -3002
#define SCF_COMMENTS_MALLOC -3003
#define SCF_INPUT_MALLOC -3004
#define SCF_INPUT_TBL_MALLOC -3005
#define SCF_TEMP_MALLOC -3006
#define SCF_OUTPUT_VAR_MALLOC -3007
#define SCF_MAP_MALLOC -3008
#define SCF_EQNS_MALLOC -3009
#define SCF_EQNS_REALLOC -3010
#define LOCATE_SCF_NOT_FOUND -3011
#define LOCATE_SCF_MALLOC -3012
#define LOCATE_SCF_REALLOC -3013
#define READ_SCF_NO_TOKEN -3014
#define READ_SCF_BAD_DSRC -3015
#define READ_SCF_BAD_INPUT -3016
#define READ_SCF_BAD_TEMP -3017
#define READ_SCF_BAD_OUTPUT -3018
#define READ_SCF_BAD_FIELD -3019
#define READ_SCF_NO_DIMEN -3020
#define READ_SCF_BAD_EQNS -3021
#define READ_SCF_BAD_TOKEN -3022
#define SCF_NO_FUNCTION -3023
#define READ_SCF_BAD_FUNCTION -3024
#define READ_SCF_BAD_INDEX -3025
#define READ_SCF_ELSE_INFO -3026
#define SCF_ACQ_MANY_READS -3027
#define SCF_OUTPUT_DATA_STR -3028
#define SCF_FRAC_MALLOC -3029
#define SCF_ARGS_MALLOC -3030

SCF_codes (3H) SCF_codes (3H)

 428 December 28, 2012

#define SCF_MATRIX_MALLOC -3031
#define SCF_OPEN_ERROR -3032
#define SCF_POS_ERROR -3033
#define SCF_SAMP_POS -3034
#define SCF_SAMP_BAD_RATE -3035
#define SCF_FAST_BAD_LOCATE -3036
#define SCF_ALLOC_PLOT_LOC -3037
#define SCF_REALLOC_PLOT_LOC -3038
#define SCF_PROCESS_BAD_EX -3039
#define SCF_BAD_FRAC -3040
#define SCF_RES_LENGTH -3042
#define SCF_ARG_RANK -3043
#define SCF_RES_RANK -3044
#define SCF_NUM_ARGS -3045
#define SCF_CREATE_ALL_MALLOC -3046
#define SCF_CREATE_ALL_REALLOC -3047
#define SCF_CREATE_MALLOC -3048
#define SCF_OUTPUT_MALLOC -3049
#define SCF_NO_FUNC_IN_LIB -3050
#define SCF_OUTPUT_CALC -3051
#define SCF_OPEN_RTIME -3052
#define SCF_INDEX_MALLOC -3053
#define SCF_INVALID_INDEX -3054
#define SCF_BAD_LOGICAL_OPER -3055
#define SCF_SAMP_BAD_INPUT_NUM -3056
#define SCF_SAMP_BAD_ACCUM -3057
#define SCF_SAMP_BAD_LOCATE -3058
#define SCF_SAMP_SWP_MALLOC -3059
#define SCF_SAMP_VECTOR_ACCUM -3060
#define SCF_SAMP_VECTOR_SRC -3061
#define SCF_NON_VOID -3062
#define SCF_VOID -3063
#define SCF_NO_INDEX -3064
#define SCF_BREAK_STMT -3065
#define SCF_DIMEN_MALLOC -3066
#define SCF_SIZE_MISMATCH -3067
#define SCF_AORDER_MISMATCH -3068
#define SCF_RORDER_MISMATCH -3069
#define SCF_TSIZE_MISMATCH -3070
#define SCF_SQUARE_ARG -3071
#define SCF_SQUARE_RES -3072
#define SCF_TENSOR_MANY_ARGS -3073
#define SCF_TDIMEN -3074
#define SCF_TSUM_VDIMEN -3075
#define SCF_TSUM_ROW_DIMEN -3076
#define SCF_TSUM_COL_DIMEN -3077

SCF_codes (3H) SCF_codes (3H)

 429 December 28, 2012

#define SCF_TSUM_RSIZE -3078
#define SCF_TWDIMEN -3079
#define SCF_TWSUM_VDIMEN -3080
#define SCF_TWSUM_ROW_DIMEN -3081
#define SCF_TWSUM_COL_DIMEN -3082
#define SCF_TWSUM_RSIZE -3083
#define SCF_TW_WLEN -3084
#define SCF_TENSOR_SAME_RANK -3085
#define SCF_MASK_LENGTHS -3086
#define SCF_TEXTRACT_SDIMEN -3087
#define SCF_TEXTRACT_START -3088
#define SCF_TEXTRACT_RES_RANK -3089
#define SCF_TEXTRACT_RES_DIMEN -3090
#define SCF_TEXTRACT_INDEX -3091
#define SCF_TINSERT_SDIMEN -3092
#define SCF_TINSERT_START -3093
#define SCF_TINSERT_INDEX -3094
#define SCF_TINSERT_SIZE -3095
#define SCF_TINT_CLEN -3096
#define SCF_TSPACE -3097
#define SCF_TENSOR_VECTOR_SRC -3098
#define SCF_FILL_SZ -3099
#define SCF_NO_LIBRARY -3100
#define SCF_BIN_BAD_SWP_FMT -3101
#define SCF_BIN_BAD_FMT -3102
#define SCF_BIN_BAD_OVAR_NUM -3103
#define SCF_BIN_MALLOC -3104
#define SCF_BIN_BAD_CNUM -3105
#define SCF_BIN_BAD_BNUM -3106
#define SCF_BIN_CLENGTH -3107
#define SCF_BIN_BLENGTH -3108
#define SCF_BIN_BAD_VFMT -3109
#define SCF_CENTER_MALLOC -3110
#define SCF_BAND_MALLOC -3111
#define SCF_SELECT_OVAR_NUM -3112
#define SCF_SELECT_BIN_MISSING -3113
#define SCF_SELECT_MALLOC -3114
#define SCF_SELECT_DEF_MALLOC -3115
#define SCF_SELECT_DEF_REALLOC -3116
#define SCF_SELECT_DVAR_NUM -3117
#define SCF_SELECT_DVAR_LENGTH -3118
#define SCF_SELECT_BAND_MALLOC -3119
#define SCF_TAVG_NO_BASE_TIME -3120
#define SCF_TAVG_BIN_MISSING -3121
#define SCF_TAVG_SELECT_MISSING -3122
#define SCF_TIME_WITH_SAMPLE -3123

SCF_codes (3H) SCF_codes (3H)

 430 December 28, 2012

#define SCF_AVG_STR_MALLOC -3124
#define SCF_TINFO_MALLOC -3125
#define SCF_TDATA_MALLOC -3126
#define SCF_SINFO_MALLOC -3127
#define SCF_SDATA_MALLOC -3128
#define SCF_ALG_START_NO_SAMPLE -3129
#define SCF_OINDEX_OVAR_NUM -3130
#define SCF_OINDEX_NO_AVG -3131
#define SCF_OINDEX_NO_OUTPUT -3132
#define SCF_OINDEX_NO_MATCH -3133
#define SCF_OCENTER_OVAR_NUM -3134
#define SCF_OCENTER_NO_AVG -3135
#define SCF_OCENTER_SELECT_MISSING -3136
#define SCF_NO_EMPTY_BUFFERS -3137
#define SCF_SAVG_BIN_MISSING -3138
#define SCF_SAVG_SELECT_MISSING -3139
#define SCF_SAMPLE_WITH_TIME -3140
#define SCF_NO_CENTER_VALUES -3141
#define SCF_BAD_START_STOP -3142

SCF_defs (3H) SCF_defs (3H)

 431 December 28, 2012

SCF_DEFS.H
function - defines mnemonics that can be utilized for SCF coding purposes

SYNOPSIS

#include "SCF_defs.h"

DESCRIPTION

The SCF_defs.h include file holds mnemonics available for use with some of the SCF
routines. All mnemonic are initialized through a define statement. The user may include
this file and use the mnemonics to help improve the readability of the calling sequence for
some of the SCF routines. This allows for transparent future modifications in their values.

CONTENTS OF FILE

#define SCF_MEASURE_TM 1
#define SCF_MEASURE_LAT_TM 2
#define SCF_DELTA_T 1
#define USE_INPUT_VAR 2
#define USE_DELTA_T 3
#define S_BEFORE_START 1
#define S_EQUAL_START 2
#define S_AFTER_START 3
#define S_NUM_SPECIAL 15
#define SPIN_RATE 10
#define DATA_ACCUM_MS 11
#define DATA_ACCUM_NS 12
#define DATA_LAT_MS 13
#define DATA_LAT_NS 14
#define SCF_LINEAR_BINS 1
#define SCF_LOG_BINS 2
#define SCF_POINT_STORAGE 1
#define SCF_BAND-STORAGE 2
#define SCF_LESS_THAN_MIN -1
#define SCF_GREATER_THAN_MAX -2

SCF_defs (3H) SCF_defs (3H)

 432 December 28, 2012

SCF_file_defs (3H) SCF_file_defs (3H)

 433 December 28, 2012

SCF_FILE_DEFS.H
function - defines all possible mnemonics used to access elements in the SCF file

SYNOPSIS

#include "SCF_file_defs.h"

DESCRIPTION

The SCF_file_defs.h include file holds all of the defined mnemonics that can be utilized to
access the data elements found within the SCF file. All mnemonics are assigned a value
through a define statement. It is recommended that the read_scf routine be invoked using
the defined mnemonics. This allows for transparent future modifications in their values.

CONTENTS OF FILE

#define NOT_USED 0
#define S_TITLE 0
#define S_NUM_CONTACT 1
#define S_CONTACT 2
#define S_NUM_COMMENTS 3
#define S_COMMENTS 4
#define S_NUM_INPUT 5
#define S_INPUT_NAME 6
#define S_INPUT_PROJ 7
#define S_INPUT_MISSION 8
#define S_INPUT_EXP 9
#define S_INPUT_INST 10
#define S_INPUT_VINST 11
#define S_INPUT_KEY 12
#define S_INPUT_DTYPE 13
#define S_INPUT_DNUM 14
#define S_INPUT_CSET 15
#define S_INPUT_NUM_TBLS 17
#define S_INPUT_TBLS 18
#define S_INPUT_OPERS 19
#define S_INPUT_LOWER_CUT 20
#define S_INPUT_UPPER_CUT 21
#define S_INPUT_QUAL_MIN 22
#define S_INPUT_QUAL_MAX 23
#define S_NUM_TEMP 24
#define S_TEMP_NAME 25
#define S_TEMP_DIMENSION 26
#define S_TEMP_LENGTHS 27
#define S_NUM_OUTPUT 28
#define S_OUTPUT_NAME 29
#define S_OUTPUT_DIMENSION 30
#define S_OUTPUT_LENGTHS 31
#define S_NUM_EQNS 32

SCF_file_defs (3H) SCF_file_defs (3H)

 434 December 28, 2012

#define S_EQUATIONS 33
#define S_EQN_TYPE 34
#define S_EQN_START 35
#define S_EQN_STOP 36
#define S_ELSE_START 37
#define S_ELSE_STOP 38
#define SCF_EQN 0
#define SCF_FN 1
#define SCF_FOR 2
#define SCF_IF 3
#define SCF_IF_ELSE 4
#define SCF_BREAK 5

libbase_SCF (3H) libbase_SCF (3H)

 435 December 28, 2012

LIBBASE_SCF.H
function- contains prototypes for the basic set of SCF routines

SYNOPSIS

#include "libbase_SCF.h"

DESCRIPTION

The libbase_SCF.h include file contains the ANSI C prototypes for the basic set of SCF
routines that interpret the contents of the SCF file, execute the algorithm defined in the SCF
file and return the results of the algorithm. These routines can be found in section 3R of the
IDFS Programmers Manual. This include file should be included in the source code
wherever an SCF routine is called from to ensure that the correct number of arguments are
used and to ensure that the argument types match.

SEE ALSO

libavg_SCF 4H

libbase_SCF (3H) libbase_SCF (3H)

 436 December 28, 2012

libavg_SCF (3H) libavg_SCF (3H)

 437 December 28, 2012

LIBAVG_SCF.H
function - contains prototypes for the SCF routines that return time-averaged or sample-
averaged data

SYNOPSIS

#include "libavg_SCF.h"

DESCRIPTION

The libavg_SCF.h include file contains the ANSI C prototypes for the SCF routines that
are used to retrieve data for output variables that have been time-averaged or sample-
averaged. These routines can be found in the 4R section of the IDFS Programmers Manual.
This include file should be included in the source code wherever an SCF routine is called
from to ensure that the correct number of arguments are used and to ensure that the
argument types match.

SEE ALSO

libbase_SCF 3H

libavg_SCF (3H) libavg_SCF (3H)

 438 December 28, 2012

idf_data (1S) idf_data (1S)

 439 December 28, 2012

IDF_DATA
function - IDFS data structure

SYNOPSIS

#include "util_str.h"

struct idf_data
{

SDDAS_ULONG data_key;
SDDAS_SHORT header_format;
SDDAS_SHORT sensor;
SDDAS_SHORT byear;
SDDAS_SHORT bday;
SDDAS_LONG bmilli;
SDDAS_LONG bnano;
SDDAS_LONG bsec;
SDDAS_LONG bnsec;
SDDAS_SHORT eyear;
SDDAS_SHORT eday;
SDDAS_LONG emilli;
SDDAS_LONG enano;
SDDAS_LONG esec;
SDDAS_LONG ensec;
SDDAS_SHORT mode_byear;
SDDAS_SHORT mode_bday;
SDDAS_LONG mode_bmilli;
SDDAS_LONG mode_bnano;
SDDAS_SHORT mode_eyear;
SDDAS_SHORT mode_eday;
SDDAS_LONG mode_emilli;
SDDAS_LONG mode_enano;
SDDAS_LONG data_accum_ms;
SDDAS_LONG data_accum_ns;
SDDAS_LONG data_lat_ms;
SDDAS_LONG data_lat_ns;
SDDAS_LONG swp_reset_ms;
SDDAS_LONG swp_reset_ns;
SDDAS_LONG sen_reset_ms;
SDDAS_LONG sen_reset_ns;
SDDAS_FLOAT *start_az;
SDDAS_FLOAT *stop_az;
SDDAS_FLOAT start_theta;
SDDAS_FLOAT stop_theta;
SDDAS_FLOAT *pitch_angles;
SDDAS_FLOAT *potential;
SDDAS_FLOAT *background;

idf_data (1S) idf_data (1S)

 440 December 28, 2012

SDDAS_SHORT num_swp_steps;
SDDAS_USHORT num_sample;
SDDAS_ULONG cal_len;
SDDAS_USHORT num_angle;
SDDAS_USHORT num_pitch;
SDDAS_USHORT num_potential;
SDDAS_USHORT num_background;
SDDAS_LONG sun_sen;
SDDAS_LONG spin_rate;
SDDAS_LONG *cal_data;
SDDAS_LONG *sen_data;
SDDAS_LONG *swp_data;
SDDAS_LONG *mode;
SDDAS_LONG d_qual;
SDDAS_UINT cal_size;
SDDAS_UINT data_size;
SDDAS_UINT swp_size;
SDDAS_UINT mode_size;
SDDAS_UINT angle_size;
SDDAS_UINT pitch_size;
SDDAS_UINT potential_size;
SDDAS_UINT background_size;
SDDAS_UCHAR mode_len;
SDDAS_CHAR hdr_change;
SDDAS_CHAR exten[3];
SDDAS_CHAR filled_data;
SDDAS_USHORT version;
SDDAS_ULONG *cset_num;
struct direction_cos *dir_cosines;
struct transformation_info *idfs_transformation;
void *base_cal;
void *base_data;
void *base_swp;
void *base_angle;
void *base_mode;
void *base_pitch;
void *base_cset;
void *base_dir_cosines;
void *base_potential;
void *base_background;
void *base_transform;

};

idf_data (1S) idf_data (1S)

 441 December 28, 2012

ELEMENT DEFINITIONS
data_key - unique value which indicates the data set of interest
header_format - used to identify conventional IDFS data from multi-

dimensional tensor IDFS data
sensor - the sensor identification number for the current data
byear - the year at the start of the accumulation of the first data value

in the data sweep
bday - the day at the start of the accumulation of the first data value

in the data sweep
bmilli - the milliseconds of the day at the start of the accumulation of

the first data value in the data sweep
bnano - the remaining nanoseconds of the day at the start of the

accumulation of the first data value in the data sweep
bsec - the start time of the first data value in the data sweep in

seconds (bmilli + bnano)
 bnsec - the remaining nanoseconds of the start time of the first data

value in the data sweeps (bmilli + bnano)
eyear - the year at the end of the accumulation period of the last data

value in the data sweep
eday - the day at the end of the accumulation period of the last data

value in the data sweep
emilli - the milliseconds of the day at the end of the accumulation

period (including any latency) of the last data value in the
data sweep

enano - the remaining nanoseconds of the day at the end of the
accumulation period (including any latency) of the last data
value in the data sweep

esec - the end time of the last data value in the data sweep in
seconds (emilli + enano)

 ensec - the remaining nanoseconds of the end time of the last data
value in the data sweeps (emilli + enano)

mode_byear - the year at the start of the accumulation for the instrument
status values

mode_bday - the day at the start of the accumulation for the instrument
status values

mode_bmilli - the milliseconds of the day at the start of the accumulation for
the instrument status values

mode_bnano - the remaining nanoseconds of the day at the start of the
accumulation for the instrument status values

mode_eyear - the year at the end of the accumulation period for the
instrument status values

mode_eday - the day at the end of the accumulation period for the
instrument status values

mode_emilli - the milliseconds of the day at the end of the accumulation
period (including any latency) for the instrument status values

idf_data (1S) idf_data (1S)

 442 December 28, 2012

mode_enano - the remaining nanoseconds of the day at the end of the
accumulation period (including any latency) for the
instrument status values

data_accum_ms - the amount of time for a single data acquisition, in
milliseconds

data_accum_ns - the remainder of data_accum_ms, in nanoseconds
data_lat_ms - the amount of dead time between successive data acquisitions,

in milliseconds
data_lat_ns - the remainder of data_lat_ms, in nanoseconds
swp_reset_ms - the amount of dead time at the end of an instrument sweep, in

milliseconds
swp_reset_ns - the remainder of swp_reset_ms, in nanoseconds
sen_reset_ms - the amount of dead time between successive sensor sets, in

milliseconds
sen_reset_ns - the remainder of sen_reset_ms, in nanoseconds
start_az - pointer to the first element in the initial azimuthal sample

angle array, with one value per data sample returned
stop_az - pointer to the first element in the final azimuthal sample angle

array, with one value per data sample returned
start_theta - the initial theta angle for the sensor in question
stop_theta - the final theta angle for the sensor in question
pitch_angles - pointer to the first element in the pitch angle array, with one

value per data sample returned
potential - pointer to the first element in the spacecraft potential array,

 with one value per data sample returned
background - pointer to the first element in the background data array,

 with one value per data sample returned
num_swp_steps - the number of elements returned in the sweep array

*swp_data
num_sample - the number of elements returned in the sensor data array

*sen_data
cal_len - the number of elements returned in the calibration array

*cal_data
num_angle - the number of elements returned in the azimuthal angle arrays

*start_az and *stop_az
num_pitch - the number of elements returned in the pitch angle array

*pitch_angles
num_potential - the number of elements returned in the spacecraft potential

array *potential
num_background - the number of elements returned in the background data

array *background
sun_sen - the time of the last 0º crossing
spin_rate - the current spin rate of the virtual instrument
cal_data - pointer to the first element in the calibration array
sen_data - pointer to the first element in the sensor data array
swp_data - pointer to the first element in the sweep array

idf_data (1S) idf_data (1S)

 443 December 28, 2012

mode - pointer to the first element in the mode flags array
d_qual - value which indicates the quality of the data being returned

and also serves as an offset into the qual_names array
defined in the VIDF file. The user should refer to the IDFS
File System Definition Document for an explanation of
qual_names and d_qual. The values returned are dependent
upon the data set being processed.

cal_size - the number of bytes allocated for the calibration array
data_size - the number of bytes allocated for the sensor data array
swp_size - the number of bytes allocated for the sweep array
mode_size - the number of bytes allocated for the mode flags array

angle_size - the number of bytes allocated for both of the azimuthal angle

arrays
pitch_size - the number of bytes allocated for the pitch angle array
potential_size - the number of bytes allocated for the spacecraft potential

array
background_size - the number of bytes allocated for the background array
mode_len - the number of elements returned in the mode flags array

*mode
hdr_change - flag which indicates a header change occurred

0 - a header change was not encountered
during the retrieval of data

1 - a header change was encountered
during the retrieval of data

exten - two character extension identifying the IDFS data file set
being utilized (should be a null string "" when using the
default IDFS data sets)

filled_data - flag which indicates if data was placed into the data arrays for
the sensor in question

0 - data was not placed into the arrays for
the sensor in question

1 - data was placed into the arrays for the
sensor in question

version - IDFS data set identification number which allows for multiple
openings of the same data set

cset_num - pointer to the first element in the calibration set size array
dir_cosines - pointer to a structure which holds the direction cosines array

 and ancillary theta start / stop angles and azimuthal start /
 stop angles associated with the pitch angle data source
idfs_transformation - pointer to a structure which holds data pertinent to coordinate

system transformations (currently, this includes euler angle
data and/or celestial position angle data)

base_cal - the base address of the allocated memory for the calibration
array

idf_data (1S) idf_data (1S)

 444 December 28, 2012

base_data - the base address of the allocated memory for the sensor data
array

base_swp - the base address of the allocated memory for the sweep array
base_angle - the base address of the allocated memory for the azimuthal

angle arrays
base_mode - the base address of the allocated memory for the mode flags
base_pitch - the base address of the allocated memory for the pitch angle

array
base_cset - the base address of the allocated memory for the calibration

set size array
 base_dir_cosines - the base address of the allocated memory for the direction
 cosine data structure
 base_potential - the base address of the allocated memory for the spacecraft

potential data
base_background - the base address of the allocated memory for the background

data
base_transform - the base address of the allocated memory for the coordinate

system transformation structure

DESCRIPTION
The idf_data structure holds all of the currently returned data values, in raw format, from
the last call to the read_drec routine.

SEE ALSO

read_drec 1R
read_drec_spin 1R
create_data_structure 1R
create_idf_data_structure 1R
direction_cos 1H
transformation_info 1H

direction_cos (1S) direction_cos (1S)

 445 December 28, 2012

DIRECTION_COS
function - data structure which holds the direction cosine information returned
within the idf_data IDFS data structure

SYNOPSIS

#include "util_str.h"

struct direction_cos
{

SDDAS_FLOAT *dir_cos123;
SDDAS_FLOAT *start_az123;
SDDAS_FLOAT *stop_az123;
SDDAS_FLOAT *start_theta123;
SDDAS_FLOAT *stop_theta123;
void *base_mem;

};

ELEMENT DEFINITIONS

dir_cos123 - pointer to the first element in the direction cosines array, with
 the three components being returned for each data sample

returned in the idf_data structure
start_az123 - pointer to the first element in the initial azimuthal sample

angle array, with the three components being returned for
each data sample returned in the idf_data structure

stop_az123 - pointer to the first element in the final azimuthal sample angle
array, with the three components being returned for each data
sample returned in the idf_data structure

start_theta123 - pointer to the first element in the initial theta angle array, with
the three components being returned for each data sample
returned in the idf_data structure

stop_theta123 - pointer to the first element in the final theta angle array, with
the three components being returned for each data sample
returned in the idf_data structure

 base_mem - pointer to the memory allocated to hold all of the data
elements contained within the structure

 DESCRIPTION

The direction_cos data structure is an integral part of the idf_data structure; that is, it is not
returned as a stand-alone data structure by the IDFS data access routines. This structure
contains the direction cosine values for each of the three components, along with ancillary
angular information pertinent to the IDFS data source utilized as the pitch angle data source.
The data is stored as triplets (x, y, z), with the 3 values being laid down sequentially within
the arrays ([0,1,2] [3,4,5] …). There is one triplet for each sample returned within the
idf_data structure. For example, if num_sample were set to 8, there would be 8 triplets
returned in the five arrays described above. Each array would contain 24 (8 * 3) values.

direction_cos (1S) direction_cos (1S)

 446 December 28, 2012

SEE ALSO
read_drec 1R
read_drec_spin 1R
idf_data 1H

transformation_info (1S) transformation_info (1S)

 447 December 28, 2012

TRANSFORMATION_INFO
function - data structure which holds the coordinate system transformation information
returned within the idf_data IDFS data structure

SYNOPSIS

#include "util_str.h"

struct transformation_info
{

SDDAS_FLOAT *euler_angles;
SDDAS_SHORT *euler_rot_axis;
SDDAS_USHORT num_euler;
SDDAS_UINT euler_size;
void *base_euler;
SDDAS_FLOAT *declination_angles;
SDDAS_FLOAT *rt_ascension_angles;
SDDAS_USHORT num_celestial;
SDDAS_UINT celestial_size;
void *base_celestial;

};

ELEMENT DEFINITIONS

euler_angles - pointer to the first element in the euler angle array, with
num_euler value(s) being returned for each data sample
returned in the idf_data structure

euler_rot_axis - pointer to the first element in the euler rotation axis array,
 with num_euler value(s) returned

num_euler - the number of euler angles defined
euler_size - the number of bytes allocated for the euler angle and euler

rotation axis arrays
base_euler - the base address of the allocated memory for the euler angle

and euler rotation axis data
declination_angles - pointer to the first element in the declination angle array, with

one value being returned for each data sample returned in the
idf_data structure

rt_ascension_angles - pointer to the first element in the right ascension angle array,
with one value being returned for each data sample returned
in the idf_data structure

num_celestial - the number of elements returned in the celestial position angle
arrays *declination_angles and *rt_ascension_angles

celestial_size - the number of bytes allocated for the declination angle and
right ascension angle arrays

base_celestial - the base address of the allocated memory for the declination
angle and right ascension angle data

transformation_info (1S) transformation_info (1S)

 448 December 28, 2012

 DESCRIPTION
The transformation_info data structure is an integral part of the idf_data structure; that is,
it is not returned as a stand-alone data structure by the IDFS data access routines. This
structure contains the euler angle data and the celestial position angle data (declination and
right ascension angles) pertinent to the IDFS data source being returned in the idf_data
structure.

For the celestial position angle data, there is an angle returned for each sample returned
within the idf_data structure; therefore, num_celestial from the transformation_info
structure and num_sample from the idf_data structure are identical. However, the data is
stored differently for the euler angle information. For the euler_angles data, there are
num_euler values being laid down sequentially within the array for each sample returned
within the idf_data structure. For example, if num_sample were set to 8 and num_euler
were set to 2, there would be 16 (8 * 2) values returned, with the first 2 values associated
with the first data sample, the next 2 values associated with the second data sample, etc.
This is not the case for the euler_rot_axis array. Since the euler rotation axis does not
change from data sample to data sample, there are num_euler elements returned in the
euler_rot_axis array.

SEE ALSO

read_drec 1R
read_drec_spin 1R
idf_data 1H

EXAMPLES
 The following code fragment demonstrates how to access the data within the

transformation_info structure, if pertinent to the data source being processed. The code
fragments assumes that a data structure has already been created and data has been read and
is ready to be processed.

#include "libbase_idfs.h"

struct idf_data *EXP_DATA;
struct transformation_info *trans_ptr;
register SDDAS_USHORT loop, k;
SDDAS_USHORT offset;
void *idf_data_ptr;

 EXP_DATA = (struct idf_data *) idf_data_ptr;
 trans_ptr = EXP_DATA->idfs_transformation;

transformation_info (1S) transformation_info (1S)

 449 December 28, 2012

/* Any coordinate system transformation information defined? */

if (trans_ptr != NULL)
{

 /* Print out the euler data and rotation axis for each data sample. */

 offset = 0;
 for (k = 0; k < EXP_DATA->num_sample; ++k)
 {
 for (loop = 0; loop < trans_ptr->num_euler; ++loop, ++offset)
 printf ("%05.2f %d ", *(trans_ptr->euler_angles + offset),
 *(trans_ptr->euler_rot_axis + loop));
 printf ("\n");
 }

 /* Print out the celestial position angle data. */

 for (loop = 0; loop < trans_ptr->num_celestial; ++loop)
 printf ("%05.2f %05.2f \n", *(trans_ptr->declination_angles + loop),
 *(trans_ptr->rt_ascension_angles + loop));
 printf ("\n");
 }

transformation_info (1S) transformation_info (1S)

 450 December 28, 2012

scf_data (3S) scf_data (3S)

 451 December 28, 2012

SCF_DATA
function - data structure that returns information for the output variables defined by the SCF

SYNOPSIS

#include "SCF.h"

struct scf_data
{

SDDAS_SHORT byear;
SDDAS_SHORT bday;
SDDAS_LONG bmilli;
SDDAS_LONG bnano;
SDDAS_SHORT eyear;
SDDAS_SHORT eday;
SDDAS_LONG emilli;
SDDAS_LONG enano;
SDDAS_LONG num_output;
SDDAS_LONG *output_length;
SDDAS_LONG *output_index;
SDDAS_FLOAT *output_data;
void *base_output;
SDDAS_CHAR filename[SCF_FILENAME];

};

ELEMENT DEFINITIONS

byear - the year at the start of the time period processed
bday - the day of year at the start of the time period processed
bmilli - the milliseconds of the day at the start of the time

period processed
bnano - the remaining nanoseconds of the day at the start of

the time period processed
eyear - the year at the end of the time period processed
eday - the day of year at the end of the time period processed
emilli - the milliseconds of the day at the end of the time

period processed
enano - the remaining nanoseconds of the day at the end of the

time period processed
num_output - the number of output variables being returned
output_length - pointer to the first element in an array which specifies

the number of data values returned for each output
variable

output_index - pointer to the first element in an array of index values
(offsets) that are used to access the data in the
output_data array for each output variable

output_data - pointer to the first element in the output data array

scf_data (3S) scf_data (3S)

 452 December 28, 2012

base_output - the base address of the allocated memory for the
output data information

filename - the name of the SCF file which this data structure is to
be associated with

DESCRIPTION

The scf_data structure holds the results from the last execution of the algorithm defined for
the SCF being processed. The user must call the routine create_scf_data_structure once
for each distinct SCF file being processed. It is these structures which are expected in any
SCF routine where output variable values are being retrieved.

SEE ALSO

scf_output_data 3R
create_scf_data_structure 3R

tensor_data (1S) tensor_data (1S)

 453 December 28, 2012

TENSOR_DATA
function – multi-dimensional IDFS data structure

SYNOPSIS

#include "util_str.h"

struct tensor_data
{

SDDAS_ULONG data_key;
SDDAS_SHORT header_format;
SDDAS_SHORT sensor;
SDDAS_SHORT byear;
SDDAS_SHORT bday;
SDDAS_LONG bmilli;
SDDAS_LONG bnano;
SDDAS_LONG bsec;
SDDAS_LONG bnsec;
SDDAS_SHORT eyear;
SDDAS_SHORT eday;
SDDAS_LONG emilli;
SDDAS_LONG enano;
SDDAS_LONG esec;
SDDAS_LONG ensec;
SDDAS_SHORT mode_byear;
SDDAS_SHORT mode_bday;
SDDAS_LONG mode_bmilli;
SDDAS_LONG mode_bnano;
SDDAS_SHORT mode_eyear;
SDDAS_SHORT mode_eday;
SDDAS_LONG mode_emilli;
SDDAS_LONG mode_enano;
SDDAS_LONG data_accum_ms;
SDDAS_LONG data_accum_ns;
SDDAS_LONG data_lat_ms;
SDDAS_LONG data_lat_ns;
SDDAS_LONG swp_reset_ms;
SDDAS_LONG swp_reset_ns;
SDDAS_LONG sen_reset_ms;
SDDAS_LONG sen_reset_ns;
SDDAS_SHORT tensor_rank;
SDDAS_LONG tensor_sizes[IDFS_MAX_DIMEN];
SDDAS_ULONG tnext_dimen[IDFS_MAX_DIMEN];
SDDAS_ULONG num_vals;
SDDAS_ULONG cal_len;
SDDAS_LONG sun_sen;
SDDAS_LONG spin_rate;

tensor_data (1S) tensor_data (1S)

 454 December 28, 2012

SDDAS_LONG *sen_data;
SDDAS_LONG *mode;
SDDAS_LONG *d_qual;
SDDAS_LONG *cal_data;
SDDAS_UINT data_size;
SDDAS_UINT tensor_bytes;
SDDAS_UINT mode_size;
SDDAS_UINT dqual_size;
SDDAS_UINT cal_size;
SDDAS_ULONG num_dqual;
SDDAS_UCHAR mode_len;
SDDAS_CHAR hdr_change;
SDDAS_CHAR exten[3];
SDDAS_CHAR filled_data;
SDDAS_USHORT version;
SDDAS_FLOAT *tdata;
SDDAS_FLOAT *tcaldata;
void *base_data;
void *base_tdata;
void *base_cal;
void *base_tcaldata;
void *base_mode;
void *base_dqual;

};

ELEMENT DEFINITIONS

data_key - unique value which indicates the multi-dimensional data set
of interest

header_format - used to identify conventional IDFS data from multi-
dimensional tensor IDFS data

sensor - the sensor identification number for the current data
byear - the year at the start of the accumulation of the first data value
bday - the day at the start of the accumulation of the first data value
bmilli - the milliseconds of the day at the start of the accumulation of

the first data value
bnano - the remaining nanoseconds of the day at the start of the

accumulation of the first data value
bsec - the start time of the first data value in seconds

(bmilli + bnano)
 bnsec - the remaining nanoseconds of the start time of the first data

value (bmilli + bnano)
eyear - the year at the end of the accumulation period of the last data

value
eday - the day at the end of the accumulation period of the last data

value

tensor_data (1S) tensor_data (1S)

 455 December 28, 2012

emilli - the milliseconds of the day at the end of the accumulation
period (including any latency) of the last data value

esec - the end time of the last data value in seconds
(emilli + enano)

 ensec - the remaining nanoseconds of the end time of the last data
value (emilli + enano)

enano - the remaining nanoseconds of the day at the end of the
accumulation period (including any latency) of the last data
value

mode_byear - the year at the start of the accumulation for the instrument
status values

mode_bday - the day at the start of the accumulation for the instrument
status values

mode_bmilli - the milliseconds of the day at the start of the accumulation for
the instrument status values

mode_bnano - the remaining nanoseconds of the day at the start of the
accumulation for the instrument status values

mode_eyear - the year at the end of the accumulation period for the
instrument status values

mode_eday - the day at the end of the accumulation period for the
instrument status values

mode_emilli - the milliseconds of the day at the end of the accumulation
period (including any latency) for the instrument status values

mode_enano - the remaining nanoseconds of the day at the end of the
accumulation period (including any latency) for the
instrument status values

data_accum_ms - the amount of time for a single data acquisition, in
milliseconds

data_accum_ns - the remainder of data_accum_ms, in nanoseconds
data_lat_ms - the amount of dead time between successive data acquisitions,

in milliseconds
data_lat_ns - the remainder of data_lat_ms, in nanoseconds
swp_reset_ms - the amount of dead time at the end of an instrument sweep, in

milliseconds
swp_reset_ns - the remainder of swp_reset_ms, in nanoseconds
sen_reset_ms - the amount of dead time between successive sensor sets, in

milliseconds
sen_reset_ns - the remainder of sen_reset_ms, in nanoseconds
tensor_rank - the number of dimensions returned in the data tensor
tensor_sizes - an array of size tensor_rank that holds the maximum lengths

of each of the dimensions defined
tnext_dimen - an array of size tensor_rank that holds the number of data
 values to bypass to get to the next index for a given dimension
 ([0] = 1st dimension or slowest varying dimension)
num_vals - the number of elements returned in the sensor data tensor
cal_len - the number of elements returned in the calibration data tensor

tensor_data (1S) tensor_data (1S)

 456 December 28, 2012

sun_sen - the time of the last 0º crossing
spin_rate - the current spin rate of the virtual instrument
sen_data - pointer to the first element in the sensor data tensor
mode - pointer to the first element in the mode flags array
d_qual - pointer to the first element in the data quality tensor whose

value indicates the quality of the data being returned
and also serves as an offset into the qual_names array
defined in the VIDF file. The user should refer to the IDFS
File System Definition Document for an explanation of
qual_names and d_qual.

 cal_data - pointer to the first element in the calibration data tensor
data_size - the number of bytes allocated for the sensor data tensor
tensor_bytes - the number of bytes allocated to convert the tensor data

according to d_type specified in the VIDF
mode_size - the number of bytes allocated for the mode flags array
dqual_size - the number of bytes allocated for data quality tensor
cal_size - the number of bytes allocated for the calibration data tensor
num_dqual - the number of elements returned in the data quality vector
mode_len - the number of elements returned in the mode flags array

*mode
hdr_change - flag which indicates a header change occurred

0 - a header change was not encountered during
the retrieval of data

1 - a header change was encountered during the
retrieval of data

exten - two character extension identifying the multi-dimensional
IDFS data file set being utilized (should be a null string ""
when using the default IDFS data sets)

filled_data - flag which indicates if data was placed into the data tensor for
the sensor in question

0 - data was not placed into the tensor for the
sensor in question

1 - data was placed into the tensor for the sensor
in question

version - IDFS data set identification number which allows for multiple
openings of the same data set

tdata - pointer to the first element in the sensor data tensor which has
been converted according to d_type in the VIDF

 tcaldata - pointer to the first element in the calibration data tensor which
has been converted according to d_type in the VIDF

base_data - the base address of the allocated memory for the sensor data
tensor

base_tdata - the base address of the allocated memory for the sensor data
 that is converted according to d_type in the VIDF
base_cal - the base address of the allocated memory for the calibration

data tensor

tensor_data (1S) tensor_data (1S)

 457 December 28, 2012

base_tcaldata - the base address of the allocated memory for the calibration
data that is converted according to d_type in the VIDF

base_mode - the base address of the allocated memory for the mode flags
base_dqual - the base address of the allocated memory for the data quality

tensor

DESCRIPTION

The tensor_data structure holds all of the currently returned data values, in raw format,
from the last call to the read_drec_tensor routine. The only conversion that is performed
on the data is a possible conversion from integer storage to its true floating point value, as
defined by d_type in the VIDF file.

SEE ALSO

read_drec_tensor 1R
create_data_structure 1R
create_tensor_data_structure 1R

	DESCRIPTION OF THE IDFS PROGRAMMERS MANUAL
	PROGRAMMING EXAMPLES
	EXAMPLE 1
	EXAMPLE 2
	EXAMPLE 3
	EXAMPLE 4
	EXAMPLE 5
	EXAMPLE 6
	EXAMPLE 7
	EXAMPLE 8
	EXAMPLE 9
	ADJUST_TIME
	CALC_TIME_RESOLUTION
	CONVERT_TO_UNITS
	CREATE_DATA_STRUCTURE
	CREATE_IDF_DATA_STRUCTURE
	CREATE_TENSOR_DATA_STRUCTURE
	DESTROY_LAST_IDF_DATA_STRUCTURE
	DESTROY_LAST_TENSOR_DATA_STRUCTURE
	EXTRACT_SINGLE_ELEMENT_FROM_IDFS_TENSOR
	FIELDS_TO_KEY
	FILE_OPEN
	FILE_POS
	FIRST_IDFS_SENSOR
	FREE_EXPERIMENT_INFO
	FREE_VERSION_INFO
	GET_DATA_KEY
	GET_VERSION_NUMBER
	INIT_IDFS
	NEXT_FILE_START_TIME
	OVERRIDE_POTENTIAL_POLYNOMIAL
	READ_DREC
	READ_DREC_SPIN
	READ_TENSOR_DATA
	READ_IDF
	RESET_EXPERIMENT_INFO
	SELECT_SENSOR
	START_IMAGE
	START_OF_SPIN
	TURN_OFF_PITCH_ANGLE_COMPUTATIONS
	TURN_ON_CELESTIAL_POSITION_COMPUTATIONS
	TURN_ON_EULER_ANGLE_COMPUTATIONS
	VALID_IDF_DATA_STRUCTURE
	VALID_TENSOR_DATA_STRUCTURE
	BUFFER_BIN_FILL
	CENTER_AND_BAND_VALUES
	COLLAPSE_DIMENSIONS
	FILL_DATA
	FILL_DATA_ENVELOPE
	FILL_DISCONTINUOUS_DATA
	FILL_MODE_DATA
	FILL_MODE_INFO
	FILL_SENSOR_INFO
	FILL_THETA_MATRIX
	MODE_UNITS_INDEX
	NUMBER_OF_DATA_BINS
	NUMBER_OF_PHI_BINS
	RETURN_CENTER_AND_BAND_PTRS
	RETURN_PHI_PTRS
	SET_BIN_INFO
	SET_COLLAPSE_INFO
	SET_SCAN_INFO
	SET_TIME_VALUES
	SPIN_DATA
	SPIN_DATA_PIXEL
	SWEEP_DATA
	SWEEP_DISCONTINUOUS_DATA
	SWEEP_MODE_DATA
	UNITS_INDEX
	CREATE_SCF_DATA_STRUCTURE
	FREE_SCF_INFO
	INIT_SCF
	LOAD_SCF
	READ_SCF
	SCF_OPEN
	SCF_OUTPUT_DATA
	SCF_POSITION
	SCF_SAMPLE_RATE
	SCF_TERMINATE_SOURCES
	SCF_VERSION_NUMBER
	SCF_ALGORITHM_START
	SCF_BIN_INFO
	SCF_OUTPUT_CENTER_AND_BANDS
	SCF_OUTPUT_DATA_INDEX
	SCF_OUTPUT_SELECT
	SCF_SAMPLE_AVERAGE
	SCF_TIME_AVERAGE
	SCF_TIME_REFERENCE
	LIBBASE_IDFS.H
	RET_CODES.H
	USER_DEFS.H
	LIBTREC_IDFS.H
	SCF_CODES.H
	SCF_DEFS.H
	SCF_FILE_DEFS.H
	LIBBASE_SCF.H
	LIBAVG_SCF.H
	IDF_DATA
	DIRECTION_COS
	TRANSFORMATION_INFO
	SCF_DATA
	TENSOR_DATA

