

SCIENCE COMPUTATION FORMULATION (SCF)
FILE FORMAT DEFINITION

Version 1.0

Department of Space Science
Southwest Research Institute ® (SwRI ®)

6220 Culebra Road
San Antonio, TX 78238-5166

Prepared By:

Carrie Gonzalez
cgonzalez@swri.org

SCF File Definition July 10, 2006

Copyright © 1998 by Southwest Research Institute (SwRI)

All rights reserved under U.S. Copyright Law and International
Conventions.

The development of this Software was supported by contracts NAG5-3148,
NAG5-6855, NAS8-36840, NAG5-2323, and NAG5-7043 issued on behalf of
the United States Government by its National Aeronautics and Space
Administration. Southwest Research Institute grants to the
Government, and others acting on its behalf, a paid-up nonexclusive,
irrevocable, worldwide license to reproduce, prepare derivative works,
and perform publicly and display publicly, by or on behalf of the
Government. Other than those rights granted to the United States
Government, no part of this Software may be reproduced in any form or
by any means, electronic or mechanical, including photocopying,
without permission in writing from Southwest Research Institute. All
inquiries should be addressed to:

Director of Contracts
Southwest Research Institute
P. O. Drawer 28510
San Antonio, Texas 78228-0510

Use of this Software is governed by the terms of the end user license
agreement, if any, which accompanies or is included with the Software
(the "License Agreement"). An end user will be unable to install any
Software that is accompanied by or includes a License Agreement,
unless the end user first agrees to the terms of the License
Agreement. Except as set forth in the applicable License Agreement,
any further copying, reproduction or distribution of this Software is
expressly prohibited. Installation assistance, product support and
maintenance, if any, of the Software is available from SwRI and/or the
Third Party Providers, as the case may be.

Disclaimer of Warranty

SOFTWARE IS WARRANTED, IF AT ALL, IN ACCORDANCE WITH THESE TERMS OF
THE LICENSE AGREEMENT. UNLESS OTHERWISE EXPLICITLY STATED, THIS
SOFTWARE IS PROVIDED "AS IS", IS EXPERIMENTAL, AND IS FOR NON-
COMMERCIAL USE ONLY, AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Limitation of Liability

SwRI SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED AS A RESULT OF
USING, MODIFYING, CONTRIBUTING, COPYING, DISTRIBUTING, OR DOWNLOADING
THIS SOFTWARE. IN NO EVENT SHALL SwRI BE LIABLE FOR ANY INDIRECT,
PUNITIVE, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGE (INCLUDING LOSS
OF BUSINESS, REVENUE, PROFITS, USE, DATA OR OTHER ECONOMIC ADVANTAGE)
HOWEVER IT ARISES, WHETHER FOR BREACH OF IN TORT, EVEN IF SwRI HAS
BEEN PREVIOUSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. YOU HAVE
SOLE RESPONSIBILITY FOR ADEQUATE PROTECTION AND BACKUP OF DATA AND/OR
EQUIPMENT USED IN CONNECTION WITH THE SOFTWARE AND WILL NOT MAKE A
CLAIM AGAINST SwRI FOR LOST DATA, RE-RUN TIME, INACCURATE OUTPUT, WORK
DELAYS OR LOST PROFITS RESULTING FROM THE USE OF THIS SOFTWARE. YOU

IDFS Copyright Notice July 10, 2006

AGREE TO HOLD SwRI HARMLESS FROM, AND YOU COVENANT NOT TO SUE SwRI
FOR, ANY CLAIMS BASED ON USING THE SOFTWARE.

Local Laws: Export Control

You acknowledge and agree this Software is subject to the U.S. Export
Administration Laws and Regulations. Diversion of such Software
contrary to U.S. law is prohibited. You agree that none of the
Software, nor any direct product therefrom, is being or will be
acquired for, shipped, transferred, or reexported, directly or
indirectly, to proscribed or embargoed countries or their nationals,
nor be used for nuclear activities, chemical biological weapons, or
missile projects unless authorized by U.S. Government. Proscribed
countries are set forth in the U.S. Export Administration Regulations.
Countries subject to U.S embargo are: Cuba, Iran, Iraq, Libya, North
Korea, Syria, and the Sudan. This list is subject to change without
further notice from SwRI, and you must comply with the list as it
exists in fact. You certify that you are not on the U.S. Department
of Commerce's Denied Persons List or affiliated lists or on the U.S.
Department of Treasury's Specially Designated Nationals List. You
agree to comply strictly with all U.S. export laws and assume sole
responsibilities for obtaining licenses to export or reexport as may
be required.

General

These Terms represent the entire understanding relating to the use of
the Software and prevail over any prior or contemporaneous,
conflicting or additional, communications. SwRI can revise these
Terms at any time without notice by updating this posting.

Trademarks

The SwRI logo is a trademark of SwRI in the United States and other
countries.

IDFS Copyright Notice July 10, 2006

Revision Log

Revision Release Date Changes to Document
Version 1.0 07/10/06 • Original Release in Word Format

• Updated supported tensor functions
• data type for s_input_opers was changed from short to

long
• spacecraft potential IDFS data type added to input

variable section

SCF File Format July 10, 2006

TABLE OF CONTENTS

Science Computation Formulation (SCF) Overview.. 1
SCF GENERAL INFORMATION... 4
1. s_title ... 4
2. s_num_contact .. 4
3. s_contact... 4
4. s_num_comments... 4
5. s_comments ... 4
INPUT VARIABLES ... 5
6. s_num_input .. 5
7. s_input_name .. 5

Input Variable Data Source... 5
8. s_input_proj... 5
9. s_input_mission.. 5
10. s_input_exp.. 6
11. s_input_inst.. 6
12. s_input_vinst ... 6

Data Type.. 6
13. s_input_dtype .. 6
14. s_input_dnum.. 7
15. s_input_cset ... 7

Data Unit... 8
16. s_input_num_tbls ... 8
17. s_input_tbls.. 8
18. s_input_opers .. 8

Data Cutoff Values ... 8
19. s_input_lower_cut.. 9
20. s_input_upper_cut.. 9

Data Quality Exclusion ... 9
21. s_input_qual_min... 9
22. s_input_qual_max .. 9
TEMPORARY VARIABLES .. 10
23. s_num_temp .. 10
24. s_temp_name... 10

Dimension Of Temporary Variable .. 10
25. s_temp_dimension ... 10
26. s_temp_lengths ... 10
OUTPUT VARIABLES ... 11
27. s_num_output.. 11
28. s_output_name.. 11

Dimension Of Output Variable... 11

SCF File Format July 10, 2006

29. s_output_dimension... 11
30. s_output_lengths... 12
ALGORITHM... 12
31. s_equation .. 12

FORMAT 1 : FOR LOOP CONSTRUCT.. 12
FORMAT 2 : CONDITIONAL TEST CONSTRUCT... 13
FORMAT 3 : VARIABLE ASSIGNMENT... 14
FORMAT 4 : STANDARD MATHEMATICAL OPERATORS .. 15
FORMAT 5 : FUNCTION CALLS.. 15

SCALAR AND VECTOR FUNCTION CALLS .. 16
MATRIX FUNCTION CALLS ... 20
TENSOR FUNCTION CALLS.. 24

EXAMPLE SCF File .. 29

SCF File Format July 10, 2006

Science Computation Formulation (SCF) Overview

The SCF file definition is separated into five basic sections. The first section consists of
general information; the second section contains the description of the input variables to be used
in the computations; the third section contains the description of any temporary variables that
may be needed for the computations; the fourth section contains the description of the output
variables generated by the computations; and the fifth section contains the description of the
algorithm steps. Each line in the SCF file is defined to be a maximum of 80 characters and must
be terminated by the line feed (newline) character. Throughout the SCF file, comment lines may
be inserted at any location. Comment lines are designated to start with "/*" and conclude with
either the end of a line or a "*/", whichever comes first. Thus, if multiple line comments are to
be included, a "/*" must appear on each line before any other text. A comment will be assumed
to end the line; no input on the line following a comment will be considered.

An overview of the SCF fields is shown in the tables below. The SCF file consists of a
set of fields. These fields may be filled with an individual entry or multiple (block) entries. A
block entry is a set of individual entries that are taken as a group to define a field within the SCF.
An example of a block entry is the temporary variable field, which is defined by specifying three
individual entries s_temp_name, s_temp_dimension and s_temp_lengths. Each individual
field is characterized by a data type, an array size, and a repetition value. The block entry
definitions for the input variables, temporary variables and output variables are defined in
secondary tables below the main SCF file format table. Note that while a block entry does not
have either a data type or array size associated with them, they do have a repetition value. All of
the data types used for the SCF fields are signed quantities unless otherwise stated. The
following table summarizes the byte sizes for each of the data types specified:

DATA TYPE BYTE SIZE
char 1
short 2
long 4
float 4

SCF FILE FORMAT

FIELD
ID

FIELD
DESCRIPTION

DATA
TYPE

ARRAY
SIZE

FIELD
REPETITION

s_title SCF title char 79 1
s_num_contact Number of lines for the contact long 1
s_contact Contact address char 79 s_num_contact
s_num_comments Number of comment lines long 1
s_comments General comments char 79 s_num_comments
s_num_input Number of input variables long 1
INPUT VARIABLE Put Input Variable Info. Here s_num_input
s_num_temp Number of temporary variables long 1
TEMP VARIABLE Put Temporary Variable Info. Here s_num_temp
s_num_output Number of output variables long 1
OUTPUT VARIABLE Put Output Variable Info. Here s_num_output
s_equation Algorithm step char 79 >= 1

SCF File Format 1 July 10, 2006

The INPUT VARIABLE field id represents a set of individual entries that define the

input variables within the SCF file. There are s_num_input sets defined. The structure of the
INPUT VARIABLE block entry is shown in the table below.

SCF INPUT VARIABLE FORMAT

FIELD
ID

FIELD
DESCRIPTION

DATA
TYPE

ARRAY
SIZE

FIELD
REPETITION

s_input_name Variable Name char 19 1
s_input_proj Project Name char 14 1
s_input_mission Mission Name char 14 1
s_input_exp Experiment Name char 14 1
s_input_inst Instrument Name char 14 1
s_input_vinst Virtual Instrument Name char 14 1
s_input_dtype Data type char 14 1
s_input_dnum Item Number short 1
s_input_cset Calibration Set Number short 1
s_input_num_tbls Number of tables short 1
s_input_tbls Table Number short s_input_num_tbls
s_input_opers Table Operator long s_input_num_tbls
s_input_lower_cut Lower Cutoff Value float 1
s_input_upper_cut Upper Cutoff Value float 1
s_input_qual_min Data Quality Minimum Exclusion Value unsigned short 1
s_input_qual_max Data Quality Maximum Exclusion Value unsigned short 1

The TEMPORARY VARIABLE field id represents a set of individual entries that define
the temporary variables within the SCF file. There are s_num_temp sets defined. The structure
of the TEMPORARY VARIABLE block entry is shown in the table below.

SCF TEMPORARY VARIABLE FORMAT

FIELD
ID

FIELD
DESCRIPTION

DATA
TYPE

ARRAY
SIZE

FIELD
REPETITION

s_temp_name Variable Name char 19 1
s_temp_dimension Dimension of the Variable long 1
s_temp_lengths Length of each dimension long s_temp_dimension

The OUTPUT VARIABLE field id represents a set of individual entries that define the

output variables within the SCF file. There are s_num_output sets defined. The structure of the
OUTPUT VARIABLE block entry is shown in the table below.

SCF OUTPUT VARIABLE FORMAT

FIELD
ID

FIELD
DESCRIPTION

DATA
TYPE

ARRAY
SIZE

FIELD
REPETITION

s_output_name Variable Name char 19 1
s_output_dimension Dimension of the Variable long 1
s_output_lengths Length of each dimension long s_output_dimension

SCF File Format 2 July 10, 2006

The remaining portion of this document will describe in detail the individual fields within

the SCF file. Each field must be entered as a single line of input in the SCF file unless otherwise
stated. The SCF software utilizes some reserved keywords and reserved characters that cannot
be used when defining input, temporary and output variable names. The reserved characters
include the left parenthesis "(", right parenthesis ")", left bracket "[", right bracket "]", less than
"<", greater than ">", equal "=", exclamation point "!" and comma "," characters. The list of
reserved keywords is given in the table below:

RESERVED KEYWORDS

SYEAR
SDAY

SMILLI
SNANO
EYEAR
EDAY

EMILLI
ENANO

NUM_SAMPLES
VECTOR_LEN
OUTSIDE_MIN
OUTSIDE_MAX

VALID_MIN
VALID_MAX
FIRST_TIME

FOR
TO

BEGIN
END

BREAK
IF

ELSE
ENDIF

The keyword NUM_SAMPLES is an internal SCF variable that is used to specify the
actual number of samples returned for the input variable that controls the time interval being
processed. The keyword VECTOR_LEN specifies the maximum number of samples that can be
returned for the input variable that controls the time interval being processed. In some cases, the
two values will be identical; in other cases, the NUM_SAMPLES value will be less than the
VECTOR_LEN value. The keywords OUTSIDE_MIN, OUTSIDE_MAX, VALID_MIN and
VALID_MAX represent the predefined values that the SCF software utilizes for data values.
These internal SCF variables can be used within the algorithm section as comparison values for
the IF-ELSE-ENDIF or as initialization values. The keywords SYEAR, SDAY, SMILLI,
SNANO, EYEAR, EDAY, EMILLI and ENANO are internal SCF variables that are used to
specify the time duration covered at each iteration of the algorithm. These internal variables can

SCF File Format 3 July 10, 2006

be accessed by the user within the algorithm definition. The keyword FIRST_TIME may be
utilized within the algorithm definition section, serving as a conditional flag which indicates if
the algorithm is being executed for the first time. A value of 1 means that the algorithm is being
executed for the first time; a value of 0 indicates successive iterations of the algorithm.

Where appropriate, fields which are linked together by a common basis will be grouped
together under a single heading. The SCF has a fixed format and the fields MUST be in the
order outlined in the tables above. Sample SCF entries are included for some of the fields and
these are shown exactly as they would appear in the SCF file.

SCF GENERAL INFORMATION

The first five field id’s that are defined within the SCF file pertain to general information
concerning the SCF.

1. s_title

This field is a single line of text, less than 80 characters in length, which can be used as
annotation for a plot. If this field is not utilized, a blank line must be inserted in the SCF file.

2. s_num_contact

This field is the number of contact lines entered in the SCF. This value must be greater
than or equal to zero. If this value is zero, no other contact information should be entered in the
SCF.

3. s_contact

This field is a set of lines, each line less than 80 characters in length, which contains the
name and address of someone who can act as a focus for any questions which might arise
concerning the design of the SCF. The number of lines is defined in the s_num_contact entry.

4. s_num_comments

This field is the number of comment lines entered in the SCF. This value must be greater
than or equal to zero. If this value is zero, no other comments information should be entered in
the SCF.

5. s_comments

This field is a set of free form text, each line less than 80 characters in length. The
number of lines of text is defined in the s_num_comments entry. Comment lines may be used
for any general documentation.

SCF File Format 4 July 10, 2006

INPUT VARIABLES

Each SCF file contains information describing the input variables that are utilized in the
computations. Input variables are only derived from IDFS data products. Input variables are
either scalar quantities, IDFS vector quantities or multi-dimensional (tensor) quantities, based
upon the derivation of the IDFS data source. A scalar quantity is a single data value that is
dependent only upon time and position. An IDFS vector quantity is a one-dimensional data item
that has a functional dependence on a single variable, which in IDFS terminology is called the
scanning variable. The length of the vector is dictated by the IDFS data source. A multi-
dimensional quantity is an N-dimensional data item, with N limited to a maximum value of 10.
The original IDFS paradigm provided for only scalar and IDFS vector quantities. The IDFS
paradigm has since been expanded to include the multi-dimensional, or tensor, quantities.

The fields that are pertinent to the definition of input variables in the SCF are described
below. It is important to note that not all input fields are relevant for a given data source. The
interactions of the fields will be described where appropriate.

6. s_num_input

This field is the number of input variables defined in the SCF. This number must be
greater than zero.

7. s_input_name

This field is the name of the input variable, less than 20 characters in length, with no
blank spaces between any two characters. The first character of the input variable name must be
a letter. The variable name cannot be identical to any of the reserved keywords nor can it
contain any of the reserved characters used within the SCF.

Input Variable Data Source

All input variables must be defined as coming from an IDFS data source. This is
accomplished by providing the five lineage fields of the virtual instrument, all on a single line of
input in the SCF, with each field separated by one or more blanks. The five lineage fields are
described below.

8. s_input_proj

This field is the acronym, less than 15 characters in length, which identifies the particular
project which the virtual instrument is associated with.

9. s_input_mission

This field is the acronym, less than 15 characters in length, which identifies the particular

mission within a project which the virtual instrument is associated with.

SCF File Format 5 July 10, 2006

10. s_input_exp

This field is the acronym, less than 15 characters in length, which identifies the particular
experiment within a mission which the virtual instrument is associated with.

11. s_input_inst

This field is the acronym, less than 15 characters in length, which identifies the particular

instrument within an experiment which the virtual instrument is associated with.

12. s_input_vinst

This field is the acronym, less than 15 characters in length, which identifies the particular
virtual instrument to be used as the data source for the input variable.

Data Type

There are several data sources that may be obtained from an IDFS data set. These data
sources include the following: (1) sensor data, (2) scan data, (3) calibration data, (4) instrument
status (mode) values, (5) data quality flags, (6) pitch angle, (7) start azimuthal angle, (8) stop
azimuthal angle, (9) spacecraft potential, (10) spin rate, (11) data accumulation time in
milliseconds, (12) data accumulation time residual in nanoseconds, (13) data latency value in
milliseconds and (14) data latency time residual in nanoseconds. An input variable must be
identified as coming from one of these fourteen sources, all of which reside in the IDFS
paradigm. Some of these data types, as noted in the table below, are not currently defined for
multi-dimensional IDFS data sets. The fields that are used to describe the data type for the input
variable in the SCF must all appear on a single line, in the proper order. A description of these
fields and associated parameters are found below.

13. s_input_dtype

This field is a string, less than 15 characters in length, which identifies the input variable
source. There are fourteen possible sources and each is described in the table below:

S_INPUT_DTYPE MEANING MULTI-DIMENSIONAL
IDFS DATA SET

SENSOR sensor data Defined
SCAN scan data Not Defined
CAL_DATA calibration data Not Defined
MODE instrument status value Defined
D_QUAL data quality flag Defined
PITCH_ANGLE pitch angles, one value per sample Not Defined
START_AZ start azimuthal angles, one value per sample Not Defined
STOP_AZ stop azimuthal angles, one value per sample Not Defined
SC_POTENTIAL spacecraft potential data, one value per sample Not Defined
SPIN_RATE instrument spin rate Defined

SCF File Format 6 July 10, 2006

S_INPUT_DTYPE MEANING MULTI-DIMENSIONAL

IDFS DATA SET
DATA_ACCUM_MS amount of time for a single data acquisition, in

milliseconds
Defined

DATA_ACCUM_NS remainder of DATA_ACCUM_MS, in nanoseconds Defined
DATA_LAT_MS amount of dead time between successive data

acquisitions, in milliseconds
Defined

DATA_LAT_NS remainder of DATA_LAT_MS, in nanoseconds Defined

The data that is selected is either a scalar value, an IDFS vector (1-D) value, or a multi-
dimensional value, depending upon the data type and IDFS data set selected. The SPIN_RATE,
DATA_ACCUM_MS, DATA_ACCUM_NS, DATA_LAT_MS and DATA_LAT_NS data
sources are scalar quantities that do not utilize the s_input_dnum field since the data is
instrument specific, not sensor specific

14. s_input_dnum

The interpretation of this field depends upon the data type selected for the input variable.
For all data types, the value must be greater than or equal to zero, with numbering starting at
zero. For the MODE data type, this field is the instrument status value of interest. For all other
data types, this field is the sensor number. The table below gives an explanation of the data that
is returned when the data type specification stops with this parameter.

DATA TYPE FIELD INTERACTION

DATA TYPE S_INPUT_DNUM MEANING
SENSOR X Sensor data for sensor X is returned. (scalar, 1-D vector or tensor

value based upon the IDFS data set being used)
SCAN X Scan data for sensor X is returned. (1-D vector)

CAL_DATA X Calibration data for sensor X is returned. (scalar or 1-D vector
value based upon the IDFS data set being used)

MODE X Instrument status value for mode X is returned. (scalar value)
D_QUAL X Data quality flag for sensor X is returned. (scalar value)

PITCH_ANGLE X Pitch angle data for sensor X is returned. (scalar or 1-D vector
value based upon the IDFS data set being used)

START_AZ X Start azimuthal angles for sensor X is returned. (scalar or 1-D
vector value based upon the IDFS data set being used)

STOP_AZ X Stop azimuthal angles for sensor X is returned. (scalar or 1-D
vector value based upon the IDFS data set being used)

SC_POTENTIAL X Spacecraft potential data for sensor X is returned (scalar or 1-D
vector value based upon the IDFS data set being used)

15. s_input_cset

This field is applicable to the CAL_DATA data type only. This field is utilized to
specify the calibration set number. The value must be greater than or equal to zero, with
numbering starting at zero. The following are four examples of possible data type definitions
that may appear in SCF files:

SPIN_RATE /* spin rate for the instrument */
D_QUAL 3 /* data quality for sensor three */

SCF File Format 7 July 10, 2006

CAL_DATA 0 1 /* data from calibration set 1 for sensor 0 */
SENSOR 1

/* sensor data for sensor one */

Data Unit

The definition of the input variable must specify the physical unit that is to be utilized for
the calculations. The fields that are used to describe the physical unit for the input variable in the
SCF are described below.

16. s_input_num_tbls

This field is the number of tables that are to be applied to convert the data from raw IDFS
format into a set of physical units. This value must be greater than or equal to zero and less than
128. If this value is zero, no other table information should be entered in the SCF file. For
multi-dimensional IDFS data sets, there is currently no mechanism available for unit conversion
of the raw IDFS data; therefore, this field must be set to zero or an error condition will be
reported when the SCF file is processed.

17. s_input_tbls

This field holds the table number(s) that are to be applied to the raw IDFS data to convert
the data into the physical unit of interest. These table numbers pertain to the tables defined in the
VIDF file, with table numbers starting at zero. There must be s_input_num_tbls table numbers
specified, all on a single line of input in the SCF file with each value separated by one or more
blanks. If the table numbers do not fit on a single line, the line may be continued by use of the
line continuation character '\' placed at the end of the line before any in-line comment. The
tables are applied in the order in which they appear in the list. In almost all cases, table numbers
should be greater than or equal to zero and less than 128. The only exception would be the usage
of -1 as a table number, which can be used in conjunction with table operations in the range of
2001 – 2005 and table operations greater than 10000. These table operations utilize data buffers
as opposed to VIDF tables; therefore, the table number is ignored.

18. s_input_opers

This field holds the operations that are to be applied to the specified tables in order to
convert the data into the physical unit of interest. There must be s_input_num_tbls operations
specified, all on a single line of input in the SCF file with each value separated by one or more
blanks. If the table operations do not fit on a single line, the line may be continued by use of the
line continuation character '\' placed at the end of the line before any in-line comment.

Data Cutoff Values

The input data can be filtered such that only data that falls within a defined range will be

included in the computation. The definition of this range is achieved through the two fields
described below. Both fields must be specified on the same line of input in the SCF file.

SCF File Format 8 July 10, 2006

19. s_input_lower_cut

This field holds the smallest data value that is to be included when collecting the input
data. This value should be entered in terms of the data unit being returned for this input variable.
The s_input_lower_cut value must be less than the s_input_upper_cut value.

20. s_input_upper_cut

This field holds the largest data value that is to be included when collecting the input
data. This value should be entered in terms of the data unit being returned for this input variable.
The s_input_upper_cut value must be greater than the s_input_lower_cut value.

For either of these two fields, the predefined values VALID_MIN and VALID_MAX
may be used. These two values represent the smallest and the largest data value that is
recognized by the IDFS data access routines, respectively. Upon execution of the algorithm, if
all of the data for the acquisition period falls outside of the defined data cutoff range, the value
for that input variable will be set to the predefined value OUTSIDE_MIN.

Data Quality Exclusion

The input data can be filtered to exclude data based upon the value of the data quality
flag. Data quality exclusion is defined by the two fields described below. Both fields must be
specified on the same line of input in the SCF file.

21. s_input_qual_min

This field holds the minimum data quality exclusion flag value. This value must be
greater than or equal to zero and less than or equal to 256. The s_input_qual_min value must
be less than or equal to the s_input_qual_max value.

22. s_input_qual_max

This field holds the maximum data quality exclusion flag value. This value must be
greater than or equal to zero and less than or equal to 256. The s_input_qual_max value must
be greater than or equal to the s_input_qual_min value.

If a single data quality flag is to be excluded, both fields should be set to the same value.
If all data is to be included, that is, no data quality flags are to be excluded, both fields should be
set to 256; otherwise, any data that has a data quality flag contained between the
s_input_qual_min and s_input_qual_max values will not be utilized in the calculation. Upon
execution of the algorithm, if all of the data for the acquisition period is excluded based upon the
data quality flags, the value for that input variable will be set to the predefined value
OUTSIDE_MIN.

SCF File Format 9 July 10, 2006

TEMPORARY VARIABLES

An SCF file may contain information describing temporary variables that are utilized in
the computations. Temporary variables are symbolic names given to hold constant values (such
as π), format conversion strings, or intermediate results during the evaluation of the algorithm.
Temporary variables are not returned by the SCF data access routines; only the defined output
variables are returned. The values for the temporary variables are not cleared after each iteration
of the SCF algorithm; therefore, temporary variables can be treated as "static" variables. The
fields that are pertinent to the definition of temporary variables in the SCF are described below.

23. s_num_temp

This field is the number of temporary variables defined in the SCF. This number must be
greater than or equal to zero. If this value is zero, no other information pertinent to the definition
of temporary variables should be entered in the SCF.

24. s_temp_name

This field is the name of the temporary variable, less than 20 characters in length, with no
blank spaces between any two characters. The first character of the temporary variable name
must be a letter. The variable name cannot be identical to any of the reserved keywords nor can it
contain any of the reserved characters used within the SCF.

Dimension Of Temporary Variable

All temporary variables must be given a dimension. The size or length of each dimension
must be specified on the same input line of the SCF file. If the dimension and lengths do not fit
on a single line, the line may be continued by use of the line continuation character '\' placed at
the end of the line before any in-line comment. The two fields described below define the
dimension of the temporary variable.

25. s_temp_dimension

This field is the dimensionality of the temporary variable, e.g. 1-D, 2-D, etc. The SCF
software supports a storage class up to ten dimensions. To specify a scalar value, a value of zero
should be specified for this field. Data products of higher dimensions can be created in the SCF
equation section using data from defined input variables and/or other temporary variables.

26. s_temp_lengths

This field holds the length or size of each dimension defined for the temporary variable.
If the temporary variable is defined as a scalar value (s_temp_dimension equals zero), this field
is not applicable and must be left blank. Otherwise, there must be a length defined for each
dimension specified, with each length value being greater than zero. The keyword SWP_LEN
may be used as a value for the s_temp_lengths field. If this is done, the SCF software will set

SCF File Format 10 July 10, 2006

the size of the dimension equal to the size of the input variable with the largest sample size
(max_samp_size).

The following are some examples of possible dimension definitions that may appear in
SCF files:

0 /* scalar value */
1 SWP_LEN /* 1-D variable of size max_samp_size */
2 3 3 /* 3 x 3 matrix */

OUTPUT VARIABLES

Each SCF file contains information describing the output variables that are generated by
the computations. Output variables are symbolic names given to the derived data products that
are generated by the computations. There must be at least one defined output variable;
otherwise, the point of the computation is meaningless. Unlike input variables where there is a
selection of physical units, each output variable returns data in only one physical unit that is
determined by the algorithm used to create it in conjunction with the units of the input variables
used in the computation. The fields that are pertinent to the definition of output variables in the
SCF are described below.

27. s_num_output

This field is the number of output variables defined in the SCF. This number must be
greater than zero.

28. s_output_name

This field is the name of the output variable, less than 20 characters in length, with no
blank spaces between any two characters. The first character of the output variable name must
be a letter. The variable name cannot be identical to any of the reserved keywords nor can it
contain any of the reserved characters used within the SCF.

Dimension Of Output Variable

All output variables must be given a dimension. The size or length of each dimension
must be specified on the same input line of the SCF file. If the dimension and lengths do not fit
on a single line, the line may be continued by use of the line continuation character '\' placed at
the end of the line before any in-line comment. The two fields described below define the
dimension of the output variable.

29. s_output_dimension

This field is the dimensionality of the output variable, e.g. 1-D, 2-D, etc. The SCF
software supports a storage class up to ten dimensions. To specify a scalar value, a value of zero
should be specified for this field. Data products of higher dimensions can be created in the SCF
equation section using data from defined input variables and/or other defined variables.

SCF File Format 11 July 10, 2006

30. s_output_lengths

This field holds the length or size of each dimension defined for the output variable. If
the output variable is defined as a scalar value (s_output_dimension equals zero), this field is
not applicable and must be left blank. Otherwise, there must be a length defined for each
dimension specified, with each length value being greater than zero. The keyword SWP_LEN
may be used as a value for the s_output_lengths field. If this is done, the SCF software will set
the size of the dimension equal to the size of the input variable with the largest sample size
(max_samp_size).

The following are some examples of possible dimension definitions that may appear in
SCF files:

0 /* scalar value */
1 SWP_LEN /* 1-D variable of size max_samp_size */
2 3 3 /* 3 x 3 matrix */

ALGORITHM

The SCF is a user defined algorithm, specifying a set of mathematical operations to be
performed on the data from one or more instruments to produce a set of modified data values.
There is only one defined operation per algorithm step.

31. s_equation

This field is a set of lines, each line less than 80 characters in length, where each line
defines a single algorithm step. At least one line must be defined in the algorithm section of the
SCF. If blank lines are desired for readability, a comment line must be used. Comment lines are
designated to start with "/*" and conclude with either the end of a line or a "*/", whichever
comes first. There must be at least one blank character between each term specified in the
algorithm step. There are five formats which an algorithm can take. In each of these formats, a
non-scalar variable can be indexed to retrieve a scalar quantity, e.g. FMT[0] references the first
element in the 1-D variable FMT. The index value can be a number or a variable, as in the case,
FMT[T1]. If the index value is a variable, the index variable must be a scalar quantity and the
index variable cannot be indexed itself, that is, indexing of the form FMT[T1[0]] is not allowed.
If a variable name is used as an index, the index value is determined at execution time. Since the
SCF software is written in ANSI C, indexing of multi-dimensional variables start at zero, not
one, and the index values run from zero to dimension size minus one.

FORMAT 1 : FOR LOOP CONSTRUCT

The first algorithm format defined is the FOR loop construct. The FOR loop construct is
used to iterate over a series of algorithm steps and is of the form:

SCF File Format 12 July 10, 2006

FOR LOOP_VAR = START TO END
BEGIN
 algorithm step(s) to iterate
END

There must be at least one algorithm step contained between the BEGIN-END block.

The tokens FOR, TO, BEGIN and END are SCF reserved keywords. LOOP_VAR is referred
to as the looping variable and must be one of the defined input, temporary or output variables.
The tokens START and END can either be a number or a variable name. If the token is a
number, only positive values can be specified. If the token is a variable name, the referenced
value must be a scalar quantity. At execution time, the SCF software assumes that the START
value is less than or equal to the END value. The SCF software supports a BREAK statement
within a FOR loop construct. This statement forces an immediate exit from the innermost
enclosing FOR loop and is specified

 BREAK

The following example loops over a 2-D variable called VALUES and sets each element
of the variable to the product of the looping variables:

START = 0
STOP = 3
FOR T1 = START TO STOP
BEGIN
 FOR T2 = 0 TO 2
 BEGIN
 VALUES[T1][T2] = T1 * T2
 END
END

In this example, VALUES is a 4 x 3 matrix. Notice that the start values for both FOR

loops are set to zero. This is necessary since the SCF software is written in ANSI C where
indexing of multi-dimensional variables start at zero, not one. Also note that the stop values are
one less than the length of the dimensions (4 x 3). This is necessary since the loop is iterated
until the looping variable is equal to the stop value.

FORMAT 2 : CONDITIONAL TEST CONSTRUCT

The second algorithm format defined is the IF-ELSE-ENDIF construct. This construct is
used to execute a series of algorithm steps based upon the result of a numerical comparison. The
IF-ELSE-ENDIF construct can take one of the two forms shown below:

IF (VAR_1 oper VAR_2)
 algorithm step(s)
ELSE
 algorithm step(s)
ENDIF

SCF File Format 13 July 10, 2006

IF (VAR_1 oper VAR_2)
 algorithm step(s)
ENDIF

There must be at least one algorithm step contained between the IF-ELSE, ELSE-ENDIF

and IF-ENDIF blocks. The tokens IF, ELSE and ENDIF are SCF reserved keywords. The left
and right parenthesis must be specified in the IF statement. VAR_1 and VAR_2 are referred to
as comparison values. A comparison value can either be a number or a variable name. If the
comparison value is a variable name, the referenced value must be a scalar quantity. The token
oper should be replaced one of the following symbols:

OPER MEANING
< less than
<= less than or equal to
> greater than
>= greater than or equal to
== equal to
!= not equal to

In the case of the IF-ELSE-ENDIF construct, if the conditional test succeeds, the

algorithm steps between the IF-ELSE block are executed. If the conditional test fails, the
algorithm steps between the ELSE-ENDIF block are executed. In the case of the IF-ENDIF
construct, if the conditional test succeeds, the algorithm steps between the IF-ENDIF block are
executed. If the conditional test fails, no algorithm steps are executed.

FORMAT 3 : VARIABLE ASSIGNMENT

The simplest format for an algorithm step initializes the resultant variable and is of the
form:

RESULT = value

where RESULT must be one of the defined input, temporary or output variables and value can
be a variable name, a number that is specified in decimal, floating point or exponential format or
a format conversion string ("%10.2e"). If the value is a variable name, the referenced value must
be a scalar quantity. The SCF software currently does not support the unary operator. The same
function can be accomplished by assigning a temporary variable the value -1 and then
multiplying by this variable or by using the NEGATIVE SCF function call (see below). If a
constant is to be utilized in a mathematical operation, it must be assigned to a temporary variable
and referenced through the temporary variable. The SCF software provides a built-in print
function which can serve as a mini-debugger so that the results of the algorithm can be displayed
on the screen as the steps are being executed. The print function can also serve as a means of
dumping the results of the computations. The print function takes two arguments, the format
conversion string and the variable to be printed.

SCF File Format 14 July 10, 2006

FORMAT 4 : STANDARD MATHEMATICAL OPERATORS

The fourth algorithm format defined should be used when the mathematical operations
(+, -, *, /) are utilized and is of the form:

RESULT = VAR_1 oper VAR_2

where oper should be replaced by one of the 4 mathematical symbols listed above, RESULT
must be one of the defined input, temporary or output variables and VAR_1 and VAR_2 must be
either a user defined variable or an internal SCF variable. As an example, the algorithm step to
multiply the variable BX by the variable BY and place the result in the variable TP is written

TP = BX * BY

Even though the SCF software supports a storage class up to ten dimensions (10-D), these
mathematical operations work on scalar-scalar, vector-scalar and vector-vector quantities. To
process variables of higher dimensions, the user should refer to the sections describing matrix
and tensor operations supported by the SCF software.

An IDFS vector quantity is defined as a 1-D data item. If variables A, B and R are IDFS
vectors then vector-vector operations are defined as

R[i] = A[i] oper B[i]

for all i where i runs from 0 to the vector length minus one. The resultant variable R is a vector
of equal length to A or B. For vector-vector operations, the vector lengths of the operands must
be the same. If the two vector operands are not the same length, each element of the resultant
variable will be set to the predefined value OUTSIDE_MIN. If variables A, B and R are scalars
then scalar-scalar operations are defined as

R = A oper B

Lastly, if the variables A and R are IDFS vectors and the variable B is a scalar then
scalar-vector operations are defined as

R[i] = A[i] oper B

for all i where i runs from 0 to the vector length minus one. The resultant variable R is a vector
of equal length to A.

FORMAT 5 : FUNCTION CALLS

The fifth and final algorithm format defined is used when a function is being called. The
function can either be a pre-defined SCF function or a user defined function. A function can
either return nothing (a void function) or return a single quantity. The algorithm step format for
a non-void function is written as

SCF File Format 15 July 10, 2006

RESULT = FUNC (VAR_1,VAR_2,...VAR_N)

where RESULT must be one of the defined input, temporary or output variables and VAR_1,
VAR_2, ... VAR_N must be either a user defined variable or an internal SCF variable. For a
void function, this algorithm step is written as

FUNC (VAR_1,VAR_2,...VAR_N)

where VAR_1, VAR_2, ... VAR_N must be either a user defined variable or an internal SCF
variable. A function can have a multi-variable input. If the function call does not fit on a single
line of input, the line may be continued by use of the line continuation character '\' placed at the
end of the line before any in-line comment. This character must appear after the left parenthesis
in the function call in order for the equation to be parsed correctly.

SCALAR AND VECTOR FUNCTION CALLS

The pre-defined SCF functions that work on scalar and IDFS vector data items are briefly
described in the table below. Each of the defined ASCII function definitions are reserved words
within the SCF software and cannot be used as variable names.

FUNCTION DEFINITIONS
FUNCTION OPERATION INPUTS USAGE

DOT dot product 2 X = DOT (VAR_1, VAR_2)
CROSS cross product 2 X = CROSS (VAR_1, VAR2)
MAG magnitude 1 X = MAG (VAR_1)
SQRT square root 1 X = SQRT (VAR_1)
SIN sine, input in radians 1 X = SIN (VAR_1)
COS cosine, input in radians 1 X = COS (VAR_1)
TAN tangent, input in radians 1 X = TAN (VAR_1)
ASIN arc sine -π/2 to π/2 1 X = ASIN (VAR_1)
ACOS arc cosine 0 to π 1 X = ACOS (VAR_1)
ATAN arc tangent -π/2 to π/2 1 X = ATAN (VAR_1)

ATAN2 arc tangent -π to π 2 X = ATAN2 (VAR_1,VAR_2)
EXP eVAR_1 1 X = EXP (VAR_1)
POW VAR_1VAR_2 2 X = POW (VAR_1,VAR_2)
LOGE loge 1 X = LOGE (VAR_1)
LOG10 log10 1 X = LOG10 (VAR_1)
POLY polynomial expansion ORDER + 3 X = POLY(ORDER,COEF_0,...COEF_N,VAR_1)

SUM_V vector element summation 1 X = SUM_V (VAR_1)
DEG_TO_RAD degrees to radians 1 X = DEG_TO_RAD (VAR_1)
RAD_TO_DEG radians to degrees 1 X = RAD_TO_DEG (VAR_1)

PRINT print variable's value 2 PRINT (VAR_1, VAR_2)
WALL_CLOCK return time elements 2 X = WALL_CLOCK (VAR_1, VAR_2)

ROUND integral rounding of data 2 X = ROUND (VAR_1, VAR_2)
MERGE merge values of two arguments 2 X = MERGE (VAR_1, VAR_2)

VARIABLE_SIZE the size of the argument 1 X = VARIABLE_SIZE (VAR_1)
BIN_DATA bin the data 8 X = BIN_DATA (VAR_1,VAR_2,...,VAR_8)

INT integral part of value 1 X = INT (VAR_1)
FRACT fractional part of value 1 X = FRACT (VAR_1)

SCF File Format 16 July 10, 2006

FUNCTION DEFINITIONS

FUNCTION OPERATION INPUTS USAGE
ABS absolute value 1 X = ABS (VAR_1)

NEGATIVE multiply value by -1 1 X = NEGATIVE (VAR_1)
MODULUS modulus 2 X = MODULUS (VAR_1, VAR_2)

Only four of the SCF function calls check for illegal input. For the LOG10 and LOGE
functions, if the input value is less than or equal to zero, the result is set to the predefined value
OUTSIDE_MIN. For the MODULUS function, if the value for the second argument is equal to
zero, the result is set to the predefined value OUTSIDE_MIN. For the SQRT function, if the
input value is less than zero, the result is set to the predefined value OUTSIDE_MIN. Most of
the above functions are self-explanatory and are at times taken verbatim from the C computing
language. Several, however require more discussion than the above table allows and these are
given individually below.

POLY The function POLY expands an Nth order polynomial about the scalar

value VAR_1. The inputs to POLY are the order of the polynomial, the
polynomial coefficients beginning with the constant term, followed by
the first order coefficient, etc., and the variable which is to be expanded.
The algorithm used by the function is

POLY = i ∑
=

=

ORDERi

i
VARiCOEF

0
)1_(*][

where it should be understood that COEF_0 is COEF[0], COEF_1 is
COEF[1], etc.

ATAN2 The function ATAN2 is the standard C atan2 function. It is equivalent

to

ATAN2 = atan (VAR_1/VAR_2)

with the exception that the result has no ambiguity in the angular
quadrant.

SUM_V The function SUM_V returns the summation of the elements in a vector

variable. The algorithm used is

∑
−=

=

1

0
][

Ni

i
iVAR

where N is the vector length and VAR is the vector variable. If the
variable is not a vector then the routine will echo back the input variable.

PRINT The function PRINT prints the current value for VAR_2 using the format

conversion string defined in VAR_1. The format conversion string is the
standard C conversion specification string that is used to display

SCF File Format 17 July 10, 2006

formatted output. Since all variables used by the SCF software are in
floating point format, it is advised that the "%f", "%e", or "%g"
conversion characters be used; otherwise, an invalid value may be
displayed for the variable being printed.

The format conversion string must be assigned to a temporary variable
that is of a 1-D storage class and is at least 4 elements in size. The
format conversion string can be up to thirty-one (31) characters in length,
leaving one character for the string terminator character. The quotation
marks must be specified but are not included when determining the
length of the string. Some examples of format conversion strings are
given below:

T1 = "%10.2e"

T1 = "\nValue = %10.2e"

WALL_CLOCK The function WALL_CLOCK takes two time parameters, VAR_1 (in
milliseconds) and VAR_2 (in nanoseconds) and returns the hour, minute
and seconds time elements. The resultant variable must be at least three
elements in size since three values are returned. The seconds value
contains a fraction component, which is expressed in nanoseconds. The
algorithm steps listed below display the time of day in the format
hour:minute:seconds

FMT1 = "%02.0f:"
FMT2 = "%012.9f\n"
TCLOCK = WALL_CLOCK (SMILLI, SNANO)
PRINT (FMT1, TCLOCK[0])
PRINT (FMT1, TCLOCK[1])
PRINT (FMT2, TCLOCK[2])

In the above example, SMILLI and SNANO are internal SCF variables
that are used to specify the time duration covered at each iteration of the
algorithm.

ROUND The function ROUND will round the value for VAR_1 to an integral

value in floating point format. The value will either be rounded up
(ceiling) to the least integral value greater than or equal to VAR_1 or will
be rounded down (floor) to the greatest integral value less than or equal
to VAR_1. The rounding scheme used is defined by the value for
VAR_2. If the ceiling scheme is desired, VAR_2 should be set to 1. If
the floor scheme is desired, VAR_2 should be set to 2. The algorithm
steps listed below display the results of both rounding schemes for the
data value BX.

TFMT1 = "\nVALUE = %f"
FLAG = 1
CEIL = ROUND (BX, FLAG)

SCF File Format 18 July 10, 2006

PRINT (TFMT1, CEIL)
FLAG = 2
FLOOR = ROUND (BX, FLAG)
PRINT (TFMT1, FLOOR)

MERGE The function MERGE will merge the two arguments VAR_1 and

VAR_2, element by element, filling in missing data when possible. If the
operands are not the same length, the resultant will be set to the
predefined value OUTSIDE_MIN. If the length of the resultant is greater
than the length of the operand, the function will be performed up to the
size of the operand. The remainder of the elements in the resultant will
be set to the predefined value OUTSIDE_MIN. The MERGE function
works as follows: if both values are present, an average of the two values
is returned. If only one value is present, the resultant is set equal to the
value found for that element. If both values are missing, the resultant is
set to the predefined value OUTSIDE_MIN.

VARIABLE_SIZE The function VARIABLE_SIZE will return the size of the argument
specified; that is, the number of data samples that are pertinent to the
argument in question. Normally, for a scalar quantity, this value will be
one. However, in the case of input variables, if the scalar quantity is
intermixed with vector quantities, the value returned by this SCF function
will be equal to the size of the input variable with the largest sample size.
This is necessary since data for scalar input variables will be retrieved
based upon the time of each element in the sweep for the control vector.

BIN_DATA The function BIN_DATA is pertinent to vector (1-D) quantities and will

return a new data array that is created from the data array specified in
argument VAR_6. The number of elements (bins) in the new data array
is specified in argument VAR_3. This value must be greater than zero;
otherwise, the resultant is set to the predefined value OUTSIDE_MIN. In
addition, if this value is greater than the size of the resultant variable, the
resultant is set to the predefined value OUTSIDE_MIN. The scan range
the resultant array must cover is specified in arguments VAR_1 and
VAR_2, with VAR_1 being the start value and VAR_2 being the stop
value. VAR_1 must be less than or equal to VAR_2; otherwise, the
resultant is set to the predefined value OUTSIDE_MIN. The bins can be
either linearly (1) or logarithmically (2) spaced. The spacing is specified
in argument VAR_4. If the start value (VAR_1) or the stop value
(VAR_2) is less than or equal to zero and if logarithmic spacing was
requested (VAR_4), the resultant is set to the predefined value
OUTSIDE_MIN. The data samples can be stored in the newly created
data array in one of two ways, point storage (1) or band storage (2). The
storage scheme to use is specified in argument VAR_5. Data in a vector
data set are taken as a function of a variable M (referred to as the
scanning variable). These scan (SWEEP_STEP) values must be
specified in argument VAR_7. The width of each scan value must be

SCF File Format 19 July 10, 2006

specified in argument VAR_8. If the user selects the point storage
scheme, the data is stored by the center variable M. If the center variable
M is located between the upper and lower edge values of a given bin, the
data value is placed only in this bin. If the user selects the band storage
scheme, data is placed in all bins which are fully or partially contained
within the range M - VAR_8/2 to M + VAR_8/2. The data is multiplied
by the percentage of the bin covered by the range before the data is
placed into the bin.

MODULUS

The function MODULUS will return the remainder of VAR_1 with
respect to VAR_2; that is, the remainder (r) is one of the numbers that
differ from VAR_1 by an integral multiple of VAR_2. The magnitude of
the remainder is less than that of VAR_2; its sign agrees with that of
VAR_1. The algorithm steps listed below will result in the value 1 being
displayed since 25 modulus 4 is equal to one.

TFMT1 = "\nVALUE = %.0f"
VAL = 25
MOD_VAL = 4
ANSWER = MODULUS (VAL, MOD_VAL)
PRINT (TFMT1, ANSWER)

MATRIX FUNCTION CALLS

The pre-defined SCF functions that work on matrix data items (2-D) are briefly described
in the table below. Each of the defined ASCII function definitions are reserved words within the
SCF software and cannot be used as variable names. In the calling sequences provided, variables
A, B and C refer to matrix quantities and variable X refers to a scalar quantity. Most of the
functions described in the table that follows are self-explanatory. However, following the table,
some additional information will be provided which explains some assumptions/requirements for
the function call in question.

FUNCTION DEFINITIONS
FUNCTION OPERATION INPUTS USAGE

ADD_MATRIX matrix addition 2 C = ADD_MATRIX (A, B)
SUBTRACT_MATRIX matrix subtraction 2 C = SUBTRACT_MATRIX (A, B)
MULTIPLY_MATRIX matrix multiplication 2 C = MULTIPLY_MATRIX (A, B)

TRANSPOSE_MATRIX transpose of a matrix 1 C = TRANSPOSE_MATRIX (A)
TRACE_MATRIX trace of a square matrix 1 X = TRACE_MATRIX (A)

IDENTITY_MATRIX identity matrix of order X 1 X = IDENTITY_MATRIX (A)
LOWER_TMATRIX lower triangular matrix 1 C = LOWER_TMATRIX (A)
UPPER_TMATRIX upper triangular matrix 1 C = UPPER_TMATRIX (A)

LU_TMATRIX lower & upper triangular matrix 1 C = LU_TMATRIX (A)
DETERMINANT determinant of a matrix 1 X = DETERMINANT (A)

INVERSE_MATRIX inverse of a matrix 1 C = INVERSE_MATRIX (A)
AUGMENT_COL_MATRIX matrix column augmentation 2 C = AUGMENT_COL_MATRIX (A, B)
AUGMENT_ROW_MATRIX matrix row augmentation 2 C = AUGMENT_ROW_MATRIX (A, B)

SCF File Format 20 July 10, 2006

ADD_MATRIX The function ADD_MATRIX adds two matrices (A + B),

element by element, and returns the result in matrix C. The
two input matrices and the resultant matrix must all be the
same size (n x m).

SUBTRACT_MATRIX The function SUBTRACT_MATRIX subtracts two matrices

(A - B), element by element, and returns the result in matrix C.
The two input matrices and the resultant matrix must all be the
same size (n x m).

MULTIPLY_MATRIX The function MULTIPLY_MATRIX can take on one of two

forms. In the first form

C = MULTIPLY_MATRIX (A, B)

two matrices (A * B) are multiplied and the result is returned
in matrix C. If matrix A is of the size n x m, matrix B must be
of the size m x p. The resultant matrix, termed the "inner-
product", must be of the size n x p.

In the second form

C = MULTIPLY_MATRIX (A, X)

each element of the matrix A is multiplied by the scalar value
X and the result is placed in the matrix C. In this case, the
input matrix and the resultant matrix must be the same size (n
x m).

TRANSPOSE_MATRIX The function TRANSPOSE_MATRIX returns the transpose

of the input matrix A. The transpose of a matrix is the matrix
that results when the rows are written as columns (or when the
columns are written as rows); therefore, if the input matrix is
of size n x m, the resultant matrix must be of size m x n.

TRACE_MATRIX The function TRACE_MATRIX returns the trace of the input

matrix A. This scalar value is computed by summing the
elements on the main diagonal of the matrix. The input matrix
must be a square matrix; that is, the input matrix must be of the
size n x n.

IDENTITY_MATRIX

The function IDENTITY_MATRIX converts the input matrix
A into an identity matrix. An identity matrix is a matrix in
which the elements on the main diagonal are set to one and all
other elements are set to zero. The input matrix must be a
square matrix; that is, the input matrix must be of the size n x
n. The scalar value that is returned by this function is the order
of the identity matrix, which depends upon the size of the input

SCF File Format 21 July 10, 2006

matrix.

LOWER_TMATRIX The function LOWER_TMATRIX returns the lower

triangularization of the input matrix A. The lower triangular
matrix is a matrix in which all elements above the diagonal are
zero. The input matrix and the resultant matrix must be square
matrices of the same size; that is, the matrices must be of the
size n x n.

UPPER_TMATRIX The function UPPER_TMATRIX returns the upper

triangularization of the input matrix A. The upper triangular
matrix is a matrix in which all elements below the diagonal are
zero. The input matrix and the resultant matrix must be square
matrices of the same size; that is, the matrices must be of the
size n x n.

Note: Of the entire set of LU (lower/upper triangular) pairs
whose product equals the input matrix, the SCF software has
chosen the pair in which the upper triangular matrix has only
ones on its diagonal.

LU_TMATRIX The function LU_TMATRIX returns the lower and upper

triangularization of the input matrix A in a single resultant
matrix. The input matrix and the resultant matrix must be
square matrices of the same size; that is, the matrices must be
of the size n x n. For an input matrix of size 4 x 4, the
combination resultant matrix is of the form:

L11 U12 U13 U14
L21 L22 U23 U24
L31 L32 L33 U34
L41 L42 L43 L44

DETERMINANT The function DETERMINANT returns the determinant of the
input matrix A. The input matrix must be a square matrix; that
is, the input matrix must be of the size n x n. The determinant
of a square matrix is a number (scalar value).

INVERSE_MATRIX The function INVERSE_MATRIX returns the inverse matrix

of the input matrix A. The input matrix and the resultant
matrix must be square matrices of the same size; that is, the
matrices must be of the size n x n.

AUGMENT_COL_MATRIX The function AUGMENT_COL_MATRIX merges the two

input matrices A and B. The input matrices and the resultant
matrix must all contain the same number of rows. The number
of columns defined in the resultant matrix must equal the
number of columns in input matrix A + the number of columns

SCF File Format 22 July 10, 2006

in input matrix B.

The contents of the first input matrix A are copied into the
resultant matrix. The contents of the second input matrix B are
copied into the resultant matrix, to the right-hand side of input
matrix A. In other words, if matrix A contained

3 -1 2
1 2 3
2 -2 -1

and matrix B contained

12
11
 2

C = AUGMENT_COL_MATRIX (A, B) would result in the
following matrix

3 -1 2 12
1 2 3 11
2 -2 -1 2

AUGMENT_ROW_MATRIX The function AUGMENT_ROW_MATRIX merges the two

input matrices A and B. The input matrices and the resultant
matrix must all contain the same number of columns. The
number of rows defined in the resultant matrix must equal the
number of rows in input matrix A + the number of rows in
input matrix B.

The contents of the first input matrix A are copied into the
resultant matrix. The contents of the second input matrix B are
copied into the resultant matrix, to the bottom of input matrix
A. In other words, if matrix A contained

3 -1 2
1 2 3
2 -2 -1

and matrix B contained

12 11 2

C = AUGMENT_ROW_MATRIX (A, B) would result in the
following matrix

SCF File Format 23 July 10, 2006

 3 -1 2
 1 2 3
 2 -2 -1
12 11 2

TENSOR FUNCTION CALLS

The pre-defined SCF functions that work on tensor data items (3-D up to 10-D) are
briefly described in the table below. Each of the defined ASCII function definitions are reserved
words within the SCF software and cannot be used as variable names. In the calling sequences
provided, variable TA refers to a tensor quantity. Most of the functions described in the table
that follows are self-explanatory. However, following the table, some additional information
will be provided which explains some assumptions/requirements that are required for the
function call in question.

In the SCF tensor function definitions, the specification of a requested dimension may be
required. Dimension numbers are expected to start at 1, going from left-to-right indexing. That
is, if a 3-D tensor of size 4 x 3 x 2 is defined, dimension = 1 corresponds to the dimension of
length 4, dimension = 2 corresponds to the dimension of length 3, and dimension = 3
corresponds to the dimension of length 2.

FUNCTION DEFINITIONS
FUNCTION OPERATION INPUTS USAGE

TENSOR_SUM straight summation 2 X = TENSOR_SUM (TA, VAR_2)
TENSOR_AVG straight average 2 X = TENSOR_AVG (TA, VAR_2)

TENSOR_WSUM weighted summation 3 X = TENSOR_WSUM (TA, VAR_2, VAR_3)
TENSOR_WAVG weighted average 3 X = TENSOR_WAVG (TA, VAR_2, VAR_3)
TENSOR_MASK applying a mask 2 X = TENSOR_MASK (TA, VAR_2)

TENSOR_EXTRACT extract elements from tensor 4 X = TENSOR_EXTRACT (TA, VAR_2, VAR_3,
 VAR_4)

TENSOR_INSERT insert elements into tensor 4 X = TENSOR_INSERT (TA, VAR_2, VAR_3,
 VAR_4)

TENSOR_INTEGRAL tensor integration 6 X = TENSOR_INTEGRAL (TA, VAR_2, VAR_3,
 VAR_4, VAR_5, VAR_6)

TENSOR_SUM The function TENSOR_SUM is used to collapse (reduce) the

input tensor TA along a single specified dimension VAR_2 using a
straight summation of the elements. Only those data values that
are within the valid IDFS data range are included in the
summation. If no values are found, the element of the resultant
being processed is set to the value defined as OUTSIDE_MIN.
The argument VAR_2 is a scalar quantity that specifies which
dimension, starting with one, is to be reduced. The input tensor
TA must be of a rank greater than or equal to two. The size of the
resultant is based upon the size of the input tensor. The following
table summarizes the resultant sizes:

SCF File Format 24 July 10, 2006

INPUT

TENSOR
RANK OF INPUT RESULTANT RANK OF

RESULTANT
row vector 2 (1 x M) scalar 0
column vector 2 (N x 1) scalar 0
matrix 2 (N x M) row or column vector 2
tensor 3 - 10 tensor 2 – 9

TENSOR_AVG The function TENSOR_AVG is used to collapse (reduce) the input

tensor TA along a single specified dimension VAR_2 using a
straight average of the elements. Only those data values that are
within the valid IDFS data range are included in the summation; that
is, the summed value ends up being divided by the number of data
samples included, not by the size of the dimension being reduced.
If no values are found, the element of the resultant being processed
is set to the value defined as OUTSIDE_MIN. The argument
VAR_2 is a scalar quantity that specifies which dimension, starting
with one, is to be reduced. The input tensor TA must be of a rank
greater than or equal to two. The size of the resultant is based upon
the size of the input tensor. The size requirements are explained in
the write-up of the tensor function TENSOR_SUM.

TENSOR_WSUM The function TENSOR_WSUM is used to collapse (reduce) the

input tensor TA along a single specified dimension VAR_3 using a
weighted summation of the elements. The second argument VAR_2
is a 1-D array that contains the weight factors to be applied
(multiplied) to each element in the dimension being collapse. Only
those data values/weight factors that are within the valid IDFS data
range are included in the summation. If no data values are found or
if all the weight factors are outside of the valid IDFS data range, the
element of the resultant being processed is set to the value defined
as OUTSIDE_MIN. The argument VAR_3 is a scalar quantity that
specifies which dimension, starting with one, is to be reduced. The
input tensor TA must be of a rank greater than or equal to two. The
size of the resultant is based upon the size of the input tensor. The
size requirements are explained in the write-up of the tensor
function TENSOR_SUM.

TENSOR_WAVG The function TENSOR_WAVG is used to collapse (reduce) the

input tensor TA along a single specified dimension VAR_2 using a
weighted average of the elements. The second argument VAR_2 is
a 1-D array that contains the weight factors to be applied
(multiplied) to each element in the dimension being collapse. Only
those data values/weight factors that are within the valid IDFS data
range are included in the summation. If no data values are found or
if all the weight factors are outside of the valid IDFS data range, the
element of the resultant being processed is set to the value defined
as OUTSIDE_MIN. The denominator used to compute the average

SCF File Format 25 July 10, 2006

is the summation of the weight factors, not the number of data
samples included in the summation. The argument VAR_2 is a
scalar quantity that specifies which dimension, starting with one, is
to be reduced. The input tensor TA must be of a rank greater than
or equal to two. The size of the resultant is based upon the size of
the input tensor. The size requirements are explained in the write-
up of the tensor function TENSOR_SUM.

TENSOR_MASK The function TENSOR_MASK is used to apply the tensor mask

VAR_2 to the input tensor TA in order to produce the resultant.
The input tensor TA, the mask VAR_2, and the resultant must be
the same rank and the same size; that is, the lengths of each
dimension must be the same for the inputs and the resultant. The
tensor mask VAR_2 is simply a series of 1's and 0's, indicating
which elements of the input tensor TA are to be copied into the
resultant. 1 means copy the element; 0 means do not copy the
element (in its place will be the special value OUTSIDE_MIN).

TENSOR_EXTRACT The function TENSOR_EXTRACT is used to extract elements

from the input tensor TA and to store the extracted elements into the
resultant. The variable VAR_2 must be a scalar quantity and is
used to indicate the number of dimensions being specified in the
VAR_3 and VAR_4 input parameters. The value for VAR_2 must
be equal to the rank of the input tensor TA. The variable VAR_3
must be defined as a 1-D array of values, as well as VAR_4. The
start index VAR_3, along with the stop index VAR_4, taken
together, define the subset of data to be extracted along each
dimension of the input tensor TA. If the start and stop index values
are the same for a particular dimension, all data along that specific
index are extracted from that particular dimension; otherwise, the
value for the start index must be less than the value for the stop
index and the index values represent a subset (range) of data values
to be extracted from that particular dimension. The rank of the
resultant is based upon the start/stop index values provided. For
each pair of start/stop index values that are the same, the rank of the
resultant should be decremented by one. For example, the start/stop
index values defined as:

start_ind[4] = {0, 0, 0, 2} stop_ind[4] = {3, 0, 2, 2}

should be inferred to result in a 2-D tensor that is 4 x 3 in size,
where 4 represents the range 0 - 3 from the first dimension and 3
represents the range 0 - 2 from the third dimension of the original
tensor. The second dimension is held constant at index value 0 and
the fourth dimension is held constant at index value 2 so that all
data values with index values of [0-3][0][0-2][2] are extracted.

SCF File Format 26 July 10, 2006

TENSOR_INSERT The function TENSOR_INSERT is used to insert elements into the

tensor specified as the resultant using the data elements provided in
the input tensor TA. The variable VAR_2 must be a scalar quantity
and is used to indicate the number of dimensions being specified in
the VAR_3 and VAR_4 input parameters. The value for VAR_2
must be equal to the rank of the resultant. The variable VAR_3 must
be defined as a 1-D array of values, as well as VAR_4. The start
index VAR_3, along with the stop index VAR_4, taken together,
define the subset of data to be inserted along each dimension for the
resultant tensor. The rank of the insertion tensor TA is of no
importance; what is required is that the total number of elements to
be inserted is equal to the number of elements defined by the range
(subset) represented by the start/stop index values. For example, the
start/stop index values defined as:

start_ind[4] = {0, 0, 0, 2} stop_ind[4] = {3, 0, 2, 2}

should be inferred to mean that 4 x 1 x 3 x 1 = 12 elements are to be
inserted into the resultant tensor; that is, sequential elements from
TA are placed into the resultant tensor where the second dimension
is held constant at index value 0 and the fourth dimension is held
constant at index value 2 so that all data values with index values of
[0-3][0][0-2][2] are set in the resultant tensor. The first value held
in TA will be placed into element [0][0][0][2], the next value held
in TA will be placed into element [0][0][1][2], etc. If the start and
stop index values are not the same for a particular dimension, the
value for the start index must be less than the value for the stop
index.

TENSOR_INTEGRAL The function TENSOR_INTEGRAL is used to integrate over the

specified dimension VAR_2 for the input tensor TA. For tensor
data, only one dimension may be integrated over at a single time;
therefore, the size of the resultant must match the dimensions left in
tact. The integral is of the form

∫
=

=

stopx

startx

fdx ⇒ ∑ ∆
i

xifi

The argument VAR_2 is a scalar quantity that specifies the
dimension number. Dimension numbers are expected to start at 1,
going from left-to-right indexing. That is, if a tensor of size 4 x 3 x
2 were to be collapsed, dimension = 1 corresponds to the dimension
of length 4, dimension = 2 corresponds to the dimension of length 3,
and dimension = 3 corresponds to the dimension of length 2. The
maximum value for VAR_2 is equivalent to the rank of the input
tensor TA.

SCF File Format 27 July 10, 2006

The argument VAR_3 is a 1-D variable which holds the center
values that are to be used for the integration. There are three basic
rules that the center values must abide by: (1) no two successive
elements can be redundant (the same value), (2) the center values
must be constantly increasing or constantly decreasing, not random,
and (3) the number of elements in the 1-D variable must be equal to
the length of the dimension being collapsed.

From the center values provided in VAR_3, bin widths are created.
These bins are logarithmically or linearly spaced, based upon the
value assigned to the scalar argument VAR_4. A value of 1
specifies linear spacing and a value of 2 specifies logarithmic
spacing of the bins.

The start and stop limits of integration are specified in the two
scalar arguments VAR_5 and VAR_6, respectively. The start value
does not have to be less than the stop value; however, this function
does not handle wrap-around scenarios, nor does it perform split
integrals. If the user is looking to perform a 2 piece integral (e.g.
315° - 360°, 0° - 15°), the user must make two separate calls for the
two distinct regions – DO NOT specify the start value as 315 and
the stop value as 15!

For the integral, only those data values within the valid IDFS data
range are included. If no values are found, the element of the
resultant being processed is set to the value defined as
OUTSIDE_MIN.

The rank of the resultant depends upon the rank in the input tensor
TA. If the input tensor is a tensor with a rank >= 3, then the rank
of the resultant tensor is one less (>= 2). If the input tensor is a
matrix, then the resultant tensor is either a row or column vector,
based upon which dimension is being integrated over. Finally, if the
input tensor is a 1-D variable, a row vector, or a column vector, then
the resultant is a scalar quantity. Note that if a row or column
vector is being integrated over, the dimension specified in VAR_2
must NOT be the dimension which has a length of 1 (1 x M or N x
1)!

SCF File Format 28 July 10, 2006

EXAMPLE SCF File

 The following is an example of an SCF file which computes the magnitude of B, Phi and
Theta from the specified magnetometer data.

/******************** Example SCF *************************/
/*
Compute Magnitude of B, Phi and Theta /* title
/*
/******************** Contact section **
5 /* number of contact lines
Dr. J. David Winningham /* contact
Southwest Research Institute
6220 Culebra Road
San Antonio, TX 78228-0510
INTERNET: david@cluster.space.swri.edu
/******************** Comment section **
1 /* number of comment lines
Routine returns variables in the order B, Phi, Theta
/******************** Input Variables **
3 /* number of input variables
/*------------------- Input 00 ---
BX /* input variable name
TSS TSS-1 TEMAG TEMAG TMMO /* IDFS source
SENSOR 0 /* data type
1 /* number of tables for unit
0 /* tables to apply
= /* table operators
VALID_MIN VALID_MAX /* lower and upper cutoff values
256 256 /* d_qual exclusion range
/*------------------- Input 01 ---
BY /* input variable name
TSS TSS-1 TEMAG TEMAG TMMO /* IDFS source
SENSOR 1 /* data type
1 /* number of tables for unit
0 /* tables to apply
= /* table operators
VALID_MIN VALID_MAX /* lower and upper cutoff values
256 256 /* d_qual exclusion range
/*------------------- Input 02 ---
BZ /* input variable name
TSS TSS-1 TEMAG TEMAG TMMO /* IDFS source
SENSOR 2 /* data type
1 /* number of tables for unit
0 /* tables to apply
= /* table operators
VALID_MIN VALID_MAX /* lower and upper cutoff values
256 256 /* d_qual exclusion range
/******************** Temp Variables ***
1 /* number of temporary variables
T1 /* temporary variable name
0 /* rank and length of dimension
/******************** Output Variables ***************************************
3 /* number of output variables

SCF File Format 29 July 10, 2006

/*------------------- Output 00 --
B /* output variable name
0 /* rank and length of dimension
/*------------------- Output 01 --
PHI /* output variable name
0 /* rank and length of dimension
/*------------------- Output 02 --
THETA /* output variable name
0 /* rank and length of dimension
/*
/******************** Equation Definition ************************************
PHI = ATAN2 (BY,BX) /* compute phi
PHI = RAD_TO_DEG (PHI) /* convert phi to degrees
BX = BX * BX
BY = BY * BY
T1 = BY + BX /* BX**2 + BY**2
BX = SQRT (T1)
THETA = ATAN2 (BX,BZ) /* compute theta
THETA = RAD_TO_DEG (THETA) /* convert theta to degrees
BZ = BZ * BZ
T1 = T1 + BZ /* BX**2 + BY**2 + BZ**2
B = SQRT (T1) /* compute B

SCF File Format 30 July 10, 2006

	Science Computation Formulation (SCF) Overview
	SCF GENERAL INFORMATION
	s_title
	s_num_contact
	s_contact
	s_num_comments
	s_comments
	INPUT VARIABLES
	s_num_input
	s_input_name
	Input Variable Data Source

	s_input_proj
	s_input_mission
	s_input_exp
	s_input_inst
	s_input_vinst
	Data Type

	s_input_dtype
	s_input_dnum
	s_input_cset
	Data Unit

	s_input_num_tbls
	s_input_tbls
	s_input_opers
	Data Cutoff Values

	s_input_lower_cut
	s_input_upper_cut
	Data Quality Exclusion

	s_input_qual_min
	s_input_qual_max
	TEMPORARY VARIABLES
	s_num_temp
	s_temp_name
	Dimension Of Temporary Variable

	s_temp_dimension
	s_temp_lengths
	OUTPUT VARIABLES
	s_num_output
	s_output_name
	Dimension Of Output Variable

	s_output_dimension
	s_output_lengths
	ALGORITHM
	s_equation
	FORMAT 1 : FOR LOOP CONSTRUCT
	FORMAT 2 : CONDITIONAL TEST CONSTRUCT
	FORMAT 3 : VARIABLE ASSIGNMENT
	FORMAT 4 : STANDARD MATHEMATICAL OPERATORS
	FORMAT 5 : FUNCTION CALLS
	SCALAR AND VECTOR FUNCTION CALLS
	MATRIX FUNCTION CALLS
	TENSOR FUNCTION CALLS

	EXAMPLE SCF File

